103 research outputs found

    Flow characteristics of gaseous flow through a microtube discharged into the atmosphere

    Get PDF
    Flow characteristics for a wide range of Reynolds number up to turbulent gas flow regime, including flow choking were numerically investigated with a microtube discharged into the atmosphere. The numerical methodology is based on the Arbitrary-Lagrangian-Eulerian (ALE) method. The LB1 turbulence model was used in the turbulent flow case. Axis-symmetric compressible momentum and energy equations of an ideal gas are solved to obtain the flow characteristics. In order to calculate the underexpanded (choked) flow at the microtube outlet, the computational domain is extended to the downstream region of the hemisphere from the microtube outlet. The back pressure was given to the outside of the downstream region. The computations were performed for adiabatic microtubes whose diameter ranges from 10 to 500 µm and whose aspect ratio is 100 or 200. The stagnation pressure range is chosen in such a way that the flow becomes a fully underexpanded flow at the microtube outlet. The results in the wide range of Reynolds number and Mach number were obtained including the choked flow. With increasing the stagnation pressure, the flow at the microtube outlet is underexpanded and choked. Although the velocity is limited, the mass flow rate (Reynolds number) increases. In order to further validate the present numerical model, an experiment was also performed for nitrogen gas through a glass microtube with 397 µm in diameter and 120 mm in length. Three pressure tap holes were drilled on the glass microtube wall. The local pressures were measured to determine local values of Mach numbers and friction factors. Local friction factors were numerically and experimentally obtained and were compared with empirical correlations in the literature on Moody's chart. The numerical results are also in excellent agreement with the experimental ones

    Alcohol affects neuronal substrates of response inhibition but not of perceptual processing of stimuli signalling a stop response

    Get PDF
    Alcohol impairs inhibitory control, including the ability to terminate an initiated action. While there is increasing knowledge about neural mechanisms involved in response inhibition, the level at which alcohol impairs such mechanisms remains poorly understood. Thirty-nine healthy social drinkers received either 0.4g/kg or 0.8g/kg of alcohol, or placebo, and performed two variants of a Visual Stop-signal task during acquisition of functional magnetic resonance imaging (fMRI) data. The two task variants differed only in their instructions: in the classic variant (VSST), participants inhibited their response to a “Go-stimulus” when it was followed by a “Stop-stimulus”. In the control variant (VSST_C), participants responded to the “Go-stimulus” even if it was followed by a “Stop-stimulus”. Comparison of successful Stop-trials (Sstop)>Go, and unsuccessful Stop-trials (Ustop)>Sstop between the three beverage groups enabled the identification of alcohol effects on functional neural circuits supporting inhibitory behaviour and error processing. Alcohol impaired inhibitory control as measured by the Stop-signal reaction time, but did not affect other aspects of VSST performance, nor performance on the VSST_C. The low alcohol dose evoked changes in neural activity within prefrontal, temporal, occipital and motor cortices. The high alcohol dose evoked changes in activity in areas affected by the low dose but importantly induced changes in activity within subcortical centres including the globus pallidus and thalamus. Alcohol did not affect neural correlates of perceptual processing of infrequent cues, as revealed by conjunction analyses of VSST and VSST_C tasks. Alcohol ingestion compromises the inhibitory control of action by modulating cortical regions supporting attentional, sensorimotor and action-planning processes. At higher doses the impact of alcohol also extends to affect subcortical nodes of fronto-basal ganglia- thalamo-cortical motor circuits. In contrast, alcohol appears to have little impact on the early visual processing of infrequent perceptual cues. These observations clarify clinically-important effects of alcohol on behaviour

    Interaction between Underexpanded Supersonic Jet and Obstacle

    No full text
    corecore