268 research outputs found

    Effect of Inter-Site Repulsions on Magnetic Susceptibility of One-Dimensional Electron Systems at Quarter-Filling

    Full text link
    The temperature dependence of the magnetic susceptibility, \chi (T), is investigated for one-dimensional interacting electron systems at quarter-filling within the Kadanoff-Wilson renormalization-group method. The forward scattering on the same branch (the g_4-process) is examined together with the backward (g_1) and forward (g_2) scattering amplitudes on opposite branches. In connection with lattice models, we show that \chi (T) is strongly enhanced by the nearest-neighbor interaction, an enhancement that surpasses one of the next-nearest-neighbor interaction. A connection between our predictions for \chi (T) and experimental results for \chi (T) in quasi-one-dimensional organic conductors is presented.Comment: 4 pages, 4 figures, to be published in Journal of the Physical Society of Japan, vol. 74, No. 1

    Density waves in quasi-one-dimensional atomic gas mixture of boson and two-component fermion

    Full text link
    We study the density-wave states of quasi-one-dimensional atomic gas mixture of one- and two-component boson and fermion using the mean-field approximation. Owing to the Peierls instability in the quasi-one-dimensional fermion system, the ground state of the system shows the fermion density wave and the periodic Bose-Einstein condensation induced by the boson-fermion interatomic interaction. For the two-component fermions, two density waves appear in these components, and the phase difference between them distinguishes two types of ground states, the in-phase and the out-phase density-waves. In this paper, a self-consistent method in the mean-field approximation is presented to treat the density-wave states in boson-fermion mixture with two-component fermions. From the analysis of the effective potential and the interaction energies calculated by this method, the density-waves are shown to appear in the ground state, which are in-phase or out-phase depending on the strength of the inter-fermion interaction. It is also shown that the periodic Bose-Einstein condensate coexists with the in-phase density-wave of fermions, but, in the case of the out-phase one, only the uniform condensate appears. The phase diagram of the system is given for the effective coupling constants.Comment: 13 pages, 6 figures, revise

    A variational approach to the optimized phonon technique for electron-phonon problems

    Full text link
    An optimized phonon approach for the numerical diagonalization of interacting electron-phonon systems is proposed. The variational method is based on an expansion in coherent states that leads to a dramatic truncation in the phonon space. The reliability of the approach is demonstrated for the extended Holstein model showing that different types of lattice distortions are present at intermediate electron-phonon couplings as observed in strongly correlated systems. The connection with the density matrix renormalization group is discussed.Comment: 4 figures; submitted to Phys. Rev.

    First-Principles Study of Electronic Structure in α\alpha-(BEDT-TTF)2_2I3_3 at Ambient Pressure and with Uniaxial Strain

    Full text link
    Within the framework of the density functional theory, we calculate the electronic structure of α\alpha-(BEDT-TTF)2_2I3_3 at 8K and room temperature at ambient pressure and with uniaxial strain along the aa- and bb-axes. We confirm the existence of anisotropic Dirac cone dispersion near the chemical potential. We also extract the orthogonal tight-binding parameters to analyze physical properties. An investigation of the electronic structure near the chemical potential clarifies that effects of uniaxial strain along the a-axis is different from that along the b-axis. The carrier densities show T2T^2 dependence at low temperatures, which may explain the experimental findings not only qualitatively but also quantitatively.Comment: 10 pages, 7 figure

    Hofstadter butterfly and integer quantum Hall effect in three dimensions

    Full text link
    For a three-dimensional lattice in magnetic fields we have shown that the hopping along the third direction, which normally tends to smear out the Landau quantization gaps, can rather give rise to a fractal energy spectram akin to Hofstadter's butterfly when a criterion, found here by mapping the problem to two dimensions, is fulfilled by anisotropic (quasi-one-dimensional) systems. In 3D the angle of the magnetic field plays the role of the field intensity in 2D, so that the butterfly can occur in much smaller fields. The mapping also enables us to calculate the Hall conductivity, in terms of the topological invariant in the Kohmoto-Halperin-Wu's formula, where each of σxy,σzx\sigma_{xy}, \sigma_{zx} is found to be quantized.Comment: 4 pages, 6 figures, RevTeX, uses epsf.sty,multicol.st

    SDW and FISDW transition of (TMTSF)2_2ClO4_4 at high magnetic fields

    Full text link
    The magnetic field dependence of the SDW transition in (TMTSF)2_2ClO4_4 for various anion cooling rates has been measured, with the field up to 27T parallel to the lowest conductivity direction c∗c^{\ast}. For quenched (TMTSF)2_2ClO4_4, the SDW transition temperature TSDWT_{\rm {SDW}} increases from 4.5K in zero field up to 8.4K at 27T. A quadratic behavior is observed below 18T, followed by a saturation behavior. These results are consistent with the prediction of the mean-field theory. From these behaviors, TSDWT_{\rm {SDW}} is estimated as TSDW0T_{\rm {SDW_0}}=13.5K for the perfect nesting case. This indicates that the SDW phase in quenched (TMTSF)2_2ClO4_4, where TSDWT_{\rm {SDW}} is less than 6K, is strongly suppressed by the two-dimensionality of the system. In the intermediate cooled state in which the SDW phase does not appear in zero field, the transition temperature for the field-induced SDW shows a quadratic behavior above 12T and there is no saturation behavior even at 27T, in contrast to the FISDW phase in the relaxed state. This behavior can probably be attributed to the difference of the dimerized gap due to anion ordering.Comment: 4pages,5figures(EPS), accepted for publication in PR

    Effects of Next-Nearest-Neighbor Repulsion on One-Dimensional Quarter-Filled Electron Systems

    Full text link
    We examine effects of the next-nearest-neighbor repulsion on electronic states of a one-dimensional interacting electron system which consists of quarter-filled band and interactions of on-site and nearest-neighbor repulsion. We derive the effective Hamiltonian for the electrons around wave number \pm \kf (\kf: Fermi wave number) and apply the renormalization group method to the bosonized Hamiltonian. It is shown that the next-nearest-neighbor repulsion makes 4\kf-charge ordering unstable and suppresses the spin fluctuation. Further the excitation gaps and spin susceptibility are also evaluated.Comment: 19 pages, 8 figures, submitted to J. Phys. Soc. Jp

    Role of Phase Variables in Quarter-Filled Spin Density Wave States

    Full text link
    Several kinds of spin density wave (SDW) states with both quarter-filled band and dimerization are reexamined for a one-dimensional system with on-site, nearest-neighbor and next-nearest-neighbor repulsive interactions, which has been investigated by Kobayashi et al. (J. Phys. Soc. Jpn. 67 (1998) 1098). Within the mean-field theory, the ground state and the response to the density variation are calculated in terms of phase variables, θ\theta and ϕ\phi, where θ\theta expresses the charge fluctuation of SDW and ϕ\phi describes the relative motion between density wave with up spin and that with down spin respectively. It is shown that the exotic state of coexistence of 2k_F-SDW and 2k_F-charge density wave (CDW) is followed by 4k_F-SDW but not by 4k_F-CDW where k_F denotes a Fermi wave vector. The harmonic potential with respect to the variation of θ\theta and/or ϕ\phi disappears for the interactions, which lead to the boundary between the pure 2k_F-SDW state and the corresponding coexistent state.Comment: 9 pages, 15 figures, to be published in J. Phys. Soc. Jpn. 69 No.3 (2000) 79

    Role of Collective Mode for Optical Conductivity and Reflectivity in Quarter-Filled Spin-Density-Wave State

    Full text link
    Taking account of a collective mode relevant to charge fluctuation, the optical conductivity of spin-density-wave state has been examined for an extended Hubbard model with one-dimensional quarter-filled band. We find that, within the random phase approximation, the conductivity exhibits several peaks at the frequency corresponding to the excitation energy of the commensurate collective mode. When charge ordering appears with increasing inter-site repulsive interactions, the main peak with the lowest frequency is reduced and the effective mass of the mode is enhanced indicating the suppression of the effect of the collective mode by charge ordering. It is also shown that the reflectivity becomes large in a wide range of frequency due to the huge dielectric constant induced by the collective mode.Comment: 11 pages, 16 figure

    Phase Diagram for the Hofstadter butterfly and integer quantum Hall effect in three dimensions

    Full text link
    We give a perspective on the Hofstadter butterfly (fractal energy spectrum in magnetic fields), which we have shown to arise specifically in three-dimensional(3D) systems in our previous work. (i) We first obtain the `phase diagram' on a parameter space of the transfer energies and the magnetic field for the appearance of Hofstadter's butterfly spectrum in anisotropic crystals in 3D. (ii) We show that the orientation of the external magnetic field can be arbitrary to have the 3D butterfly. (iii) We show that the butterfly is beyond the semiclassical description. (iv) The required magnetic field for a representative organic metal is estimated to be modest (∼40\sim 40 T) if we adopt higher Landau levels for the butterfly. (v) We give a simpler way of deriving the topological invariants that represent the quantum Hall numbers (i.e., two Hall conductivity in 3D, σxy,σzx\sigma_{xy}, \sigma_{zx}, in units of e2/he^2/h).Comment: 8 pages, 8 figures, eps versions of the figures will be sent on request to [email protected]
    • …
    corecore