19 research outputs found

    International research in graphene-oxide based materials for net-zero energy, military and aeronautic applications catalysed by Tamaulipas, Mexico: A Mini Review

    No full text
    Graphene oxide, as a nanoscopic platform for functional materials, has been extensively studied for several applications. The present Mini Review stresses the collaborative research in graphene-oxide materials pivoted from the Group of Materials and Technologies for Energy, Health, and Environment at an Instituto Politecnico Nacional unit in Tamaulipas, in Northeastern Mexico, with Mexican, Turkish, and British collaborators. This review covers the recent works on photovoltaic and photocatalytic materials, coatings for thermonuclear reactors, and composites and metamaterials for military and aeronautic applications.</p

    Photocatalytic oxidation of methane over silver decorated zinc oxide nanocatalysts

    Get PDF
    The search for active catalysts that efficiently oxidize methane under ambient conditions remains a challenging task for both C1 utilization and atmospheric cleansing. Here, we show that when the particle size of zinc oxide is reduced down to the nanoscale, it exhibits high activity for methane oxidation under simulated sunlight illumination, and nano silver decoration further enhances the photo-activity via the surface plasmon resonance. The high quantum yield of 8% at wavelengths \u3c 400 nm and over 0.1% at wavelengths ¿ 470 nm achieved on the silver decorated zinc oxide nanostructures shows great promise for atmospheric methane oxidation. Moreover, the nano-particulate composites can efficiently photo-oxidize other small molecular hydrocarbons such as ethane, propane and ethylene, and in particular, can dehydrogenize methane to generate ethane, ethylene and so on. On the basis of the experimental results, a two-step photocatalytic reaction process is suggested to account for the methane photo-oxidation
    corecore