23 research outputs found

    Plasma concentrations of coffee polyphenols and plasma biomarkers of diabetes risk in healthy Japanese women

    Get PDF
    Coffee consumption has been reported to reduce the risk of type 2 diabetes in experimental and epidemiological studies. This anti-diabetic effect of coffee may be attributed to its high content in polyphenols especially caffeic acid and chlorogenic acid. However, the association between plasma coffee polyphenols and diabetic risks has never been investigated in the literature. In this study, fasting plasma samples were collected from 57 generally healthy females aged 38-73 (mean 52, s.d. 8) years recruited in Himeji, Japan. The concentrations of plasma coffee polyphenols were determined by liquid chromatography coupled with mass tandem spectrometer. Diabetes biomarkers in the plasma/serum samples were analysed by a commercial diagnostic laboratory. Statistical associations were assessed using Spearman's correlation coefficients. The results showed that plasma chlorogenic acid exhibited negative associations with fasting blood glucose, glycated hemoglobin and C-reactive protein, whereas plasma total coffee polyphenol and plasma caffeic acid were weakly associated with these biomarkers. Our preliminary data support previous findings that coffee polyphenols have anti-diabetic effects but further replications with large samples of both genders are recommended

    Self-consistent field theory for the interactions between keratin intermediate filaments

    Get PDF
    Background: Keratins are important structural proteins found in skin, hair and nails. Keratin Intermediate Filaments are major components of corneocytes, nonviable horny cells of the Stratum Corneum, the outermost layer of skin. It is considered that interactions between unstructured domains of Keratin Intermediate Filaments are the key factor in maintaining the elasticity of the skin. Results: We have developed a model for the interactions between keratin intermediate filaments based on self-consistent field theory. The intermediate filaments are represented by charged surfaces, and the disordered terminal domains of the keratins are represented by charged heteropolymers grafted to these surfaces. We estimate the system is close to a charge compensation point where the heteropolymer grafting density is matched to the surface charge density. Using a protein model with amino acid resolution for the terminal domains, we find that the terminal chains can mediate a weak attraction between the keratin surfaces. The origin of the attraction is a combination of bridging and electrostatics. The attraction disappears when the system moves away from the charge compensation point, or when excess small ions and/or NMF-representing free amino acids are added. Conclusions: These results are in concordance with experimental observations, and support the idea that the interaction between keratin filaments, and ultimately in part the elastic properties of the keratin-containing tissue, is controlled by a combination of the physico-chemical properties of the disordered terminal domains and the composition of the medium in the inter-filament region. Keywords: Stratum corneum, Skin keratins, Intermediate filaments, Unstructured terminal domains, Bridging attractio
    corecore