2,908 research outputs found
Combined Human, Antenna Orientation in Elevation Direction and Ground Effect on RSSI in Wireless Sensor Networks
In this paper, we experimentally investigate the combined effect of human,
antenna orientation in elevation direction and the ground effect on the
Received Signal Strength Indicator (RSSI) parameter in the Wireless Sensor
Network (WSN). In experiment, we use MICAz motes and consider different
scenarios where antenna of the transmitter node is tilted in elevation
direction. The motes were placed on the ground to take into account the ground
effect on the RSSI. The effect of one, two and four persons on the RSSI is
recorded. For one and two persons, different walking paces e.g. slow, medium
and fast pace, are analysed. However, in case of four persons, random movement
is carried out between the pair of motes. The experimental results show that
some antenna orientation angles have drastic effect on the RSSI, even without
any human activity. The fluctuation count and range of RSSI in different
scenarios with same walking pace are completely different. Therefore, an
efficient human activity algorithm is need that effectively takes into count
the antenna elevation and other parameters to accurately detect the human
activity in the WSN deployment region.Comment: 10th IEEE International Conference on Frontiers of Information
Technology (FIT 12), 201
Non-Invasive Induction Link Model for Implantable Biomedical Microsystems: Pacemaker to Monitor Arrhythmic Patients in Body Area Networks
In this paper, a non-invasive inductive link model for an Implantable
Biomedical Microsystems (IBMs) such as, a pacemaker to monitor Arrhythmic
Patients (APs) in Body Area Networks (BANs) is proposed. The model acts as a
driving source to keep the batteries charged, inside a device called,
pacemaker. The device monitors any drift from natural human heart beats, a
condition of arrythmia and also in turn, produces electrical pulses that create
forced rhythms that, matches with the original normal heart rhythms. It
constantly sends a medical report to the health center to keep the medical
personnel aware of the patient's conditions and let them handle any critical
condition, before it actually happens. Two equivalent models are compared by
carrying the simulations, based on the parameters of voltage gain and link
efficiency. Results depict that the series tuned primary and parallel tuned
secondary circuit achieves the best results for both the parameters, keeping in
view the constraint of coupling co-efficient (k), which should be less than a
value \emph{0.45} as, desirable for the safety of body tissues.Comment: IEEE 8th International Conference on Broadband and Wireless
Computing, Communication and Applications (BWCCA'13), Compiegne, Franc
Modeling Enhancements in DSR, FSR, OLSR under Mobility and Scalability Constraints in VANETs
Frequent topological changes due to high mobility is one of the main issues
in Vehicular Ad-hoc NETworks (VANETs). In this paper, we model transmission
probabilities of 802.11p for VANETs and effect of these probabilities on
average transmission time. To evaluate the effect of these probabilities of
VANETs in routing protocols, we select Dynamic Source Routing (DSR), Fish-eye
State Routing (FSR) and Optimized Link State Routing (OLSR). Framework of these
protocols with respect to their packet cost is also presented in this work. A
novel contribution of this work is enhancement of chosen protocols to obtain
efficient behavior. Extensive simulation work is done to prove and compare the
efficiency in terms of high throughput of enhanced versions with default
versions of protocols in NS-2. For this comparison, we choose three performance
metrics; throughput, End-to-End Delay (E2ED) and Normalized Routing Load (NRL)
in different mobilities and scalabilities. Finally, we deduce that enhanced DSR
(DSR-mod) outperforms other protocols by achieving 16% more packet delivery for
all scalabilities and 28% more throughput in selected mobilities than original
version of DSR (DSR-orig)
DSDV, DYMO, OLSR: Link Duration and Path Stability
In this paper, we evaluate and compare the impact of link duration and path
stability of routing protocols; Destination Sequence Distance vector (DSDV),
Dynamic MANET On- Demand (DYMO) and Optimized Link State Routing (OLSR) at
different number of connections and node density. In order to improve the
efficiency of selected protocols; we enhance DYMO and OLSR. Simulation and
comparison of both default and enhanced routing protocols is carried out under
the performance parameters; Packet Delivery Ratio (PDR), Average End-to End
Delay (AE2ED) and Normalized Routing Overhead (NRO). From the results, we
observe that DYMO performs better than DSDV, MOD-OLSR and OLSR in terms of PDR,
AE2ED, link duration and path stability at the cost of high value of NRO
On Link Availability Probability of Routing Protocols for Urban Scenario in VANETs
This paper presents the link availability probability. We evaluate and
compare the link availability probability for routing protocols; Ad hoc
On-demand Distance vector (AODV), Dynamic Source Routing (DSR) and Fisheye
State Routing (FSR) for different number of connections and node density. A
novel contribution of this work is enhancement in existing parameters of
routing protocols; AODV, DSR and FSR as MOD-AODV, MOD-DSR and MOD-FSR. From the
results, we observe that MOD-DSR and DSR outperform MOD-AODV, AODV, MODOLSR and
OLSR in terms of Packet Delivery Ratio (PDR), Average End-to End Delay (AE2ED),
link availability probability at the cost of high value of Normalized Routing
Overhead (NRO).Comment: IEEE Conference on Open Systems (ICOS2012)", Kuala Lumpur, Malaysia,
201
- …