428 research outputs found
Macrophage migration inhibitory factor downregulation: a novel mechanism of resistance to anti-angiogenic therapy.
Anti-angiogenic therapies for cancer such as VEGF neutralizing antibody bevacizumab have limited durability. While mechanisms of resistance remain undefined, it is likely that acquired resistance to anti-angiogenic therapy will involve alterations of the tumor microenvironment. We confirmed increased tumor-associated macrophages in bevacizumab-resistant glioblastoma patient specimens and two novel glioblastoma xenograft models of bevacizumab resistance. Microarray analysis suggested downregulated macrophage migration inhibitory factor (MIF) to be the most pertinent mediator of increased macrophages. Bevacizumab-resistant patient glioblastomas and both novel xenograft models of resistance had less MIF than bevacizumab-naive tumors, and harbored more M2/protumoral macrophages that specifically localized to the tumor edge. Xenografts expressing MIF-shRNA grew more rapidly with greater angiogenesis and had macrophages localizing to the tumor edge which were more prevalent and proliferative, and displayed M2 polarization, whereas bevacizumab-resistant xenografts transduced to upregulate MIF exhibited the opposite changes. Bone marrow-derived macrophage were polarized to an M2 phenotype in the presence of condition-media derived from bevacizumab-resistant xenograft-derived cells, while recombinant MIF drove M1 polarization. Media from macrophages exposed to bevacizumab-resistant tumor cell conditioned media increased glioma cell proliferation compared with media from macrophages exposed to bevacizumab-responsive tumor cell media, suggesting that macrophage polarization in bevacizumab-resistant xenografts is the source of their aggressive biology and results from a secreted factor. Two mechanisms of bevacizumab-induced MIF reduction were identified: (1) bevacizumab bound MIF and blocked MIF-induced M1 polarization of macrophages; and (2) VEGF increased glioma MIF production in a VEGFR2-dependent manner, suggesting that bevacizumab-induced VEGF depletion would downregulate MIF. Site-directed biopsies revealed enriched MIF and VEGF at the enhancing edge in bevacizumab-naive patients. This MIF enrichment was lost in bevacizumab-resistant glioblastomas, driving a tumor edge M1-to-M2 transition. Thus, bevacizumab resistance is driven by reduced MIF at the tumor edge causing proliferative expansion of M2 macrophages, which in turn promotes tumor growth
Nuclear localization of the mitochondrial factor HIGD1A during metabolic stress.
Cellular stress responses are frequently governed by the subcellular localization of critical effector proteins. Apoptosis-inducing Factor (AIF) or Glyceraldehyde 3-Phosphate Dehydrogenase (GAPDH), for example, can translocate from mitochondria to the nucleus, where they modulate apoptotic death pathways. Hypoxia-inducible gene domain 1A (HIGD1A) is a mitochondrial protein regulated by Hypoxia-inducible Factor-1α (HIF1α). Here we show that while HIGD1A resides in mitochondria during physiological hypoxia, severe metabolic stress, such as glucose starvation coupled with hypoxia, in addition to DNA damage induced by etoposide, triggers its nuclear accumulation. We show that nuclear localization of HIGD1A overlaps with that of AIF, and is dependent on the presence of BAX and BAK. Furthermore, we show that AIF and HIGD1A physically interact. Additionally, we demonstrate that nuclear HIGD1A is a potential marker of metabolic stress in vivo, frequently observed in diverse pathological states such as myocardial infarction, hypoxic-ischemic encephalopathy (HIE), and different types of cancer. In summary, we demonstrate a novel nuclear localization of HIGD1A that is commonly observed in human disease processes in vivo
Motion-Based Technical Skills Assessment in Transoesophageal Echocardiography
This paper presents a novel approach for evaluating technical skills in Transoesophageal Echocardiography (TEE). Our core assumption is that operational competency can be objectively expressed by specific motion-based measures. TEE experiments were carried out with an augmented reality simulation platform involving both novice trainees and expert radiologists. Probe motion data were collected and used to formulate various kinematic parameters. Subsequent analysis showed that statistically significant differences exist among the two groups for the majority of the metrics investigated. Experts exhibited lower completion times and higher average velocity and acceleration, attributed to their refined ability for efficient and economical probe manipulation. In addition, their navigation pattern is characterised by increased smoothness and fluidity, evaluated through the measures of dimensionless jerk and spectral arc length. Utilised as inputs to well-known clustering algorithms, the derived metrics are capable of discriminating experience levels with high accuracy (>84 %)
Water safety in drought: An indigenous knowledge-based qualitative study
The indigenous knowledge of our ancestors provides valuable information on how to prevent negative health impacts on water hygiene in the event of drought. The present study aimed to explore the role of indigenous knowledge in maintaining water safety in drought conditions. A qualitative content analysis method using in-depth semi-structured interviews was used to collect and analyze the data. The current research was carried out from April 2017 to June 2018. A purposive sampling method was used to select 15 participants. Trustworthiness was applied with the Lincoln and Guba approach and data were analyzed using Graneheim and Lundman's method. Two categories including drinking water storage and water collection were extracted from the data. Each category includes different strategies to deal with water. Water storage includes water quantity and water quality. Water collection consists of collection methods and rules. Indigenous knowledge is an indispensable component of community disaster resilience. It can be transferred to other communities and employed to empower affected communities. But using the knowledge without scientific considerations cannot guarantee peoples' health throughout the drought periods. © IWA Publishing 2020 Journal of Water and Healt
Glycoproteomic Analysis of the Aortic Extracellular Matrix in Marfan Patients.
OBJECTIVE: Marfan syndrome (MFS) is caused by mutations in FBN1 (fibrillin-1), an extracellular matrix (ECM) component, which is modified post-translationally by glycosylation. This study aimed to characterize the glycoproteome of the aortic ECM from patients with MFS and relate it to aortopathy. Approach and Results: ECM extracts of aneurysmal ascending aortic tissue from patients with and without MFS were enriched for glycopeptides. Direct N-glycopeptide analysis by mass spectrometry identified 141 glycoforms from 47 glycosites within 35 glycoproteins in the human aortic ECM. Notably, MFAP4 (microfibril-associated glycoprotein 4) showed increased and more diverse N-glycosylation in patients with MFS compared with control patients. MFAP4 mRNA levels were markedly higher in MFS aortic tissue. MFAP4 protein levels were also increased at the predilection (convexity) site for ascending aorta aneurysm in bicuspid aortic valve patients, preceding aortic dilatation. In human aortic smooth muscle cells, MFAP4 mRNA expression was induced by TGF (transforming growth factor)-β1 whereas siRNA knockdown of MFAP4 decreased FBN1 but increased elastin expression. These ECM changes were accompanied by differential gene expression and protein abundance of proteases from ADAMTS (a disintegrin and metalloproteinase with thrombospondin motifs) family and their proteoglycan substrates, respectively. Finally, high plasma MFAP4 concentrations in patients with MFS were associated with a lower thoracic descending aorta distensibility and greater incidence of type B aortic dissection during 68 months follow-up. CONCLUSIONS: Our glycoproteomics analysis revealed that MFAP4 glycosylation is enhanced, as well as its expression during the advanced, aneurysmal stages of MFS compared with control aneurysms from patients without MFS
Quantum circuits with many photons on a programmable nanophotonic chip
Growing interest in quantum computing for practical applications has led to a
surge in the availability of programmable machines for executing quantum
algorithms. Present day photonic quantum computers have been limited either to
non-deterministic operation, low photon numbers and rates, or fixed random gate
sequences. Here we introduce a full-stack hardware-software system for
executing many-photon quantum circuits using integrated nanophotonics: a
programmable chip, operating at room temperature and interfaced with a fully
automated control system. It enables remote users to execute quantum algorithms
requiring up to eight modes of strongly squeezed vacuum initialized as two-mode
squeezed states in single temporal modes, a fully general and programmable
four-mode interferometer, and genuine photon number-resolving readout on all
outputs. Multi-photon detection events with photon numbers and rates exceeding
any previous quantum optical demonstration on a programmable device are made
possible by strong squeezing and high sampling rates. We verify the
non-classicality of the device output, and use the platform to carry out
proof-of-principle demonstrations of three quantum algorithms: Gaussian boson
sampling, molecular vibronic spectra, and graph similarity
- …