503 research outputs found
Controllability on infinite-dimensional manifolds
Following the unified approach of A. Kriegl and P.W. Michor (1997) for a
treatment of global analysis on a class of locally convex spaces known as
convenient, we give a generalization of Rashevsky-Chow's theorem for control
systems in regular connected manifolds modelled on convenient
(infinite-dimensional) locally convex spaces which are not necessarily
normable.Comment: 19 pages, 1 figur
Disturbance Observer
Disturbance observer is an inner-loop output-feedback controller whose role
is to reject external disturbances and to make the outer-loop baseline
controller robust against plant's uncertainties. Therefore, the closed-loop
system with the DOB approximates the nominal closed-loop by the baseline
controller and the nominal plant model with no disturbances. This article
presents how the disturbance observer works under what conditions, and how one
can design a disturbance observer to guarantee robust stability and to recover
the nominal performance not only in the steady-state but also for the transient
response under large uncertainty and disturbance
Weak Liouville-Arnold Theorems & Their Implications
This paper studies the existence of invariant smooth Lagrangian graphs for
Tonelli Hamiltonian systems with symmetries. In particular, we consider Tonelli
Hamiltonians with n independent but not necessarily involutive constants of
motion and obtain two theorems reminiscent of the Liouville-Arnold theorem.
Moreover, we also obtain results on the structure of the configuration spaces
of such systems that are reminiscent of results on the configuration space of
completely integrable Tonelli Hamiltonians.Comment: 24 pages, 1 figure; v2 corrects typo in online abstract; v3 includes
new title (was: A Weak Liouville-Arnold Theorem), re-arrangement of
introduction, re-numbering of main theorems; v4 updates the authors' email
and physical addresses, clarifies notation in section 4. Final versio
BFV-complex and higher homotopy structures
We present a connection between the BFV-complex (abbreviation for
Batalin-Fradkin-Vilkovisky complex) and the so-called strong homotopy Lie
algebroid associated to a coisotropic submanifold of a Poisson manifold. We
prove that the latter structure can be derived from the BFV-complex by means of
homotopy transfer along contractions. Consequently the BFV-complex and the
strong homotopy Lie algebroid structure are quasi-isomorphic and
control the same formal deformation problem.
However there is a gap between the non-formal information encoded in the
BFV-complex and in the strong homotopy Lie algebroid respectively. We prove
that there is a one-to-one correspondence between coisotropic submanifolds
given by graphs of sections and equivalence classes of normalized Maurer-Cartan
elemens of the BFV-complex. This does not hold if one uses the strong homotopy
Lie algebroid instead.Comment: 50 pages, 6 figures; version 4 is heavily revised and extende
- âŠ