503 research outputs found

    Line Shapes in Coherent Ion Dip Spectroscopy of Polyatomic Molecules

    Get PDF

    Disturbance Observer

    Full text link
    Disturbance observer is an inner-loop output-feedback controller whose role is to reject external disturbances and to make the outer-loop baseline controller robust against plant's uncertainties. Therefore, the closed-loop system with the DOB approximates the nominal closed-loop by the baseline controller and the nominal plant model with no disturbances. This article presents how the disturbance observer works under what conditions, and how one can design a disturbance observer to guarantee robust stability and to recover the nominal performance not only in the steady-state but also for the transient response under large uncertainty and disturbance

    Weak Liouville-Arnold Theorems & Their Implications

    Full text link
    This paper studies the existence of invariant smooth Lagrangian graphs for Tonelli Hamiltonian systems with symmetries. In particular, we consider Tonelli Hamiltonians with n independent but not necessarily involutive constants of motion and obtain two theorems reminiscent of the Liouville-Arnold theorem. Moreover, we also obtain results on the structure of the configuration spaces of such systems that are reminiscent of results on the configuration space of completely integrable Tonelli Hamiltonians.Comment: 24 pages, 1 figure; v2 corrects typo in online abstract; v3 includes new title (was: A Weak Liouville-Arnold Theorem), re-arrangement of introduction, re-numbering of main theorems; v4 updates the authors' email and physical addresses, clarifies notation in section 4. Final versio

    BFV-complex and higher homotopy structures

    Get PDF
    We present a connection between the BFV-complex (abbreviation for Batalin-Fradkin-Vilkovisky complex) and the so-called strong homotopy Lie algebroid associated to a coisotropic submanifold of a Poisson manifold. We prove that the latter structure can be derived from the BFV-complex by means of homotopy transfer along contractions. Consequently the BFV-complex and the strong homotopy Lie algebroid structure are L∞L_{\infty} quasi-isomorphic and control the same formal deformation problem. However there is a gap between the non-formal information encoded in the BFV-complex and in the strong homotopy Lie algebroid respectively. We prove that there is a one-to-one correspondence between coisotropic submanifolds given by graphs of sections and equivalence classes of normalized Maurer-Cartan elemens of the BFV-complex. This does not hold if one uses the strong homotopy Lie algebroid instead.Comment: 50 pages, 6 figures; version 4 is heavily revised and extende
    • 

    corecore