25,501 research outputs found

    Thermal conductivity of single crystalline MgB_2

    Full text link
    The ab-plane thermal conductivity κ\kappa of single-crystalline hexagonal MgB_2 has been measured as a function of magnetic field H with orientations both parallel and perpendicular to the c-axis and at temperatures between 0.5 and 300 K. In the mixed state, κ(H)\kappa(H) measured at constant temperatures reveals features that are not typical for common type-II superconductors. The observed behavior may be associated with the field-induced reduction of two superconducting energy gaps, significantly different in magnitude. A nonlinear temperature dependence of the electronic thermal conductivity is observed in the field-induced normal state at low temperatures. This behavior is at variance with the Wiedemann-Franz law, and suggests an unexpected instability of the electronic subsystem in the normal state at T ~ 1 K.Comment: 9 pages,7 figure

    The dynamics of loop formation in a semiflexible polymer

    Get PDF
    The dynamics of loop formation by linear polymer chains has been a topic of several theoretical/experimental studies. Formation of loops and their opening are key processes in many important biological processes. Loop formation in flexible chains has been extensively studied by many groups. However, in the more realistic case of semiflexible polymers, not much results are available. In a recent study (K. P. Santo and K. L. Sebastian, Phys. Rev. E, \textbf{73}, 031293 (2006)), we investigated opening dynamics of semiflexible loops in the short chain limit and presented results for opening rates as a function of the length of the chain. We presented an approximate model for a semiflexible polymer in the rod limit, based on a semiclassical expansion of the bending energy of the chain. The model provided an easy way to describe the dynamics. In this paper, using this model, we investigate the reverse process, i.e., the loop formation dynamics of a semiflexible polymer chain by describing the process as a diffusion-controlled reaction. We perform a detailed multidimensional analysis of the problem and calculate closing times for a semiflexible chain which leads to results that are physically expected. Such a multidimensional analysis leading to these results does not seem to exist in the literature so far.Comment: 37 pages 4 figure

    A key to room-temperature ferromagnetism in Fe-doped ZnO: Cu

    Full text link
    Successful synthesis of room-temperature ferromagnetic semiconductors, Zn1x_{1-x}Fex_{x}O, is reported. The essential ingredient in achieving room-temperature ferromagnetism in bulk Zn1x_{1-x}Fex_{x}O was found to be additional Cu doping. A transition temperature as high as 550 K was obtained in Zn0.94_{0.94}Fe0.05_{0.05}Cu0.01_{0.01}O; the saturation magnetization at room temperature reached a value of 0.75μB0.75 \mu_{\rm B} per Fe. Large magnetoresistance was also observed below 100100 K.Comment: 11 pages, 4 figures; to appear in Appl. Phys. Let

    Temperature dependence and anisotropy of the bulk upper critical field H_c2 of MgB_2

    Full text link
    The bulk upper critical field H_{c2}(T) of superconducting MgB_2 and its anisotropy are established by analyzing experimental data on the temperature and magnetic field dependences of the ab-plane thermal conductivity of a single-crystalline sample in external magnetic fields oriented both parallel (H_{c2}^c) and perpendicular (H_{c2}^{ab}) to the c axis of the hexagonal lattice. From numerical fits we deduce the anisotropy ratio \gamma_0 = H_{c2}^{ab}(0) / H_{c2}^c(0)=4.2 at T=0 K. Both the values and the temperature dependences of H_{c2}^c and H_{c2}^{ab} are distinctly different from previous claims based on measurements of the electrical resistivity.Comment: 4 pages, 4 figure

    Statistical-mechanical iterative algorithms on complex networks

    Full text link
    The Ising models have been applied for various problems on information sciences, social sciences, and so on. In many cases, solving these problems corresponds to minimizing the Bethe free energy. To minimize the Bethe free energy, a statistical-mechanical iterative algorithm is often used. We study the statistical-mechanical iterative algorithm on complex networks. To investigate effects of heterogeneous structures on the iterative algorithm, we introduce an iterative algorithm based on information of heterogeneity of complex networks, in which higher-degree nodes are likely to be updated more frequently than lower-degree ones. Numerical experiments clarified that the usage of the information of heterogeneity affects the algorithm in BA networks, but does not influence that in ER networks. It is revealed that information of the whole system propagates rapidly through such high-degree nodes in the case of Barab{\'a}si-Albert's scale-free networks.Comment: 7 pages, 6 figure

    Low Temperature Magnetic Properties of the Double Exchange Model

    Full text link
    We study the {\it ferromagnetic} (FM) Kondo lattice model in the strong coupling limit (double exchange (DE) model). The DE mechanism proposed by Zener to explain ferromagnetism has unexpected properties when there is more than one itinerant electron. We find that, in general, the many-body ground state of the DE model is {\it not} globally FM ordered (except for special filled-shell cases). Also, the low energy excitations of this model are distinct from spin wave excitations in usual Heisenberg ferromagnets, which will result in unusual dynamic magnetic properties.Comment: 5 pages, RevTeX, 5 Postscript figures include

    Netons: Vibrations of Complex Networks

    Full text link
    We consider atoms interacting each other through the topological structure of a complex network and investigate lattice vibrations of the system, the quanta of which we call {\em netons} for convenience. The density of neton levels, obtained numerically, reveals that unlike a local regular lattice, the system develops a gap of a finite width, manifesting extreme rigidity of the network structure at low energies. Two different network models, the small-world network and the scale-free network, are compared: The characteristic structure of the former is described by an additional peak in the level density whereas a power-law tail is observed in the latter, indicating excitability of netons at arbitrarily high energies. The gap width is also found to vanish in the small-world network when the connection range r=1r = 1.Comment: 9 pages, 6 figures, to appear in JP
    corecore