6,382 research outputs found
Electrical characteristics of a free-burning direct-current argon arc operating between 90 and 563 kilowatts with two types of cathodes
The electrical characteristics of a high-power, long-lived, free-burning dc argon arc are presented. Empirical formulas relating voltage to current, electrode separation, and operating pressure are given for two types of cathodes: a typical point tip cathode and a cathode with a 1.27-cm-(0.5-in.-) diameter crater in the tip. Power was varied from 90 to 563 kW. A discussion of the cathode with the crater tip is given
Three-dimensional computed tomography from interferometric measurements within a narrow cone of views
A theory to determine the properties of a fluid from measurements of its projections was developed and tested. Viewing cones as small as 10 degrees were evaluated, with the only assumption being that the property was space limited. The results of applying the theory to numerical and actual interferograms of a spherical discontinuity of refractive index are presented. The theory was developed to test the practicality and limits of using three-dimensional computer tomography in internal fluid dynamics
Causes of the Violation of Integrity Constraints for Supporting the Quality of Databases
[EN] The quality of the information provided by databases can be captured by integrity constraints. Thus, violated cases of constraints may serve as a basis for measuring the quality of given database states. A quality metric with the potential of more accuracy is obtained by measuring the causes, i.e., data that are responsible for constraint violations. Such measures also serve for controlling quality impairment across updates.Partially supported by FEDER and the Spanish grants TIN2009-14460-C03 and TIN2010-17139Decker, H. (2011). Causes of the Violation of Integrity Constraints for Supporting the Quality of Databases. Lecture Notes in Computer Science. 6786:283-292. https://doi.org/10.1007/978-3-642-21934-4_24S2832926786Ceri, S., Gottlob, G., Tanca, L.: What you always wanted to know about Datalog (and never dared to ask). TKDE 1(1), 146–166 (1989)Christiansen, H., Martinenghi, D.: On simplification of database integrity constraints. Fundam. Inform. 71(4), 371–417 (2006)Decker, H.: Answers that Have Integrity in Databases that Violate Constraints. Presented at the ICALP Workshop SDKB 2010, to appear in the Post-Workshop Proceedings of SDKB (2011)Decker, H.: Toward a uniform cause-based approach to inconsistency-tolerant database semantics. In: Meersman, R., Dillon, T., Herrero, P. (eds.) OTM 2010. LNCS, vol. 6427, pp. 983–998. Springer, Heidelberg (2010)Decker, H.: Quantifying the Quality of Stored Data by Measuring their Integrity. In: Proc. DIWT 2009, Workshop SMM, pp. 823–828. IEEE, Los Alamitos (2009)Decker, H., Martinenghi, D.: Inconsistency-tolerant Integrity Checking. TKDE 23(2), 218–234 (2011)Decker, H., Martinenghi, D.: Modeling, measuring and monitoring the quality of information. In: Heuser, C.A., Pernul, G. (eds.) ER 2009. LNCS, vol. 5833, pp. 212–221. Springer, Heidelberg (2009)Grant, J., Hunter, A.: Measuring inconsistency in knowledgebases. J. Intelligent Information Systems 27(2), 159–184 (2006)Ramakrishnan, R., Gehrke, J.: Database Management Systems. McGraw-Hill, New York (2003
High powered arc electrodes
Nonconsumable metal electric arc electrodes are described capable of being operated in a variety of gases at various pressures, current, and powers. The cathode has a circular annulus tip to spread the emission area for improved cooling
Signal transducer and activator of transcription-1 localizes to the mitochondria and modulates mitophagy
The signal transducer and activator of transcription (STAT) proteins are latent transcription factors that have been shown to be involved in cell proliferation, development, apoptosis, and autophagy. STAT proteins undergo activation by phosphorylation at tyrosine 701 and serine 727 where they translocate to the nucleus to regulate gene expression. STAT1 has been shown to be involved in promoting apoptotic cell death in response to cardiac ischemia/reperfusion and has recently been shown by our laboratory to be involved in negatively regulating autophagy. These processes are thought to promote cell death and restrict cell survival leading to the generation of an infarct. Here we present data that shows STAT1 localizes to the mitochondria and co-immunoprecipitates with LC3. Furthermore, electron microscopy studies also reveal mitochondria from ex vivo I/R treated hearts of STAT1KO mice contained within a double membrane autophagosome indicating that STAT1 may be involved in negatively regulating mitophagy. This is the first description of STAT1 being localized to the mitochondria and also having a role in mitophagy
Data consistency: toward a terminological clarification
The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-319-21413-9_15Consistency is an inconsistency are ubiquitous term in
data engineering. Its relevance to quality is obvious, since consistency
is a commonplace dimension of data quality. However, connotations are
vague or ambiguous. In this paper, we address semantic consistency,
transaction consistency, replication consistency, eventual consistency and
the new notion of partial consistency in databases. We characterize their
distinguishing properties, and also address their differences, interactions
and interdependencies. Partial consistency is an entry door to living with
inconsistency, which is an ineludible necessity in the age of big data.Decker and F.D. Muñoz—supported by the Spanish MINECO grant TIN 2012-37719-C03-01.Decker, H.; Muñoz Escoí, FD.; Misra, S. (2015). Data consistency: toward a terminological clarification. En Computational Science and Its Applications -- ICCSA 2015: 15th International Conference, Banff, AB, Canada, June 22-25, 2015, Proceedings, Part V. Springer International Publishing. 206-220. https://doi.org/10.1007/978-3-319-21413-9_15S206220Abadi, D.: Consistency tradeoffs in modern distributed database system design: Cap is only part of the story. Computer 45(2), 37–42 (2012)Bailis, P. (2015). http://www.bailis.org/blog/Bailis, P., Ghodsi, A.: Eventual consistency today: limitations, extensions, and beyond. ACM Queue, 11(3) (2013)Balegas, V., Duarte, S., Ferreira, C., Rodrigues, R., Preguica, N., Najafzadeh, M., Shapiro, M.: Putting consistency back into eventual consistency. In: 10th EuroSys. ACM (2015). http://dl.acm.org/citation.cfm?doid=2741948.2741972Beeri, C., Bernstein, P., Goodman, N.: A sophisticate’s introduction to database normalization theory. In: VLDB, pp. 113–124 (1978)Berenson, H., Bernstein, P., Gray, J., Melton, J., O’Neil, E., O’Neil, P.: A critique of ansi sql isolation levels. SIGMoD Record 24(2), 1–10 (1995)Bermbach, D., Tai, S.: Eventual consistency: how soon is eventual? In: 6th MW4SOC. ACM (2011)Bernabé-Gisbert, J., Muñoz-Escoí, F.: Supporting multiple isolation levels in replicated environments. Data & Knowledge Engineering 7980, 1–16 (2012)Bernstein, P., Das, S.. Rethinking eventual consistency. In: SIGMOD 2013, pp. 923–928. ACM (2013)Bernstein, P., Hadzilacos, V., Goodman, N.: Concurrency Control and Recovery in Database Systems. Addison-Wesley (1987)Bertossi, L., Hunter, A., Schaub, T.: Inconsistency Tolerance. In: Bertossi, L., Hunter, A., Schaub, T. (eds.) Inconsistency Tolerance. LNCS, vol. 3300, pp. 1–14. Springer, Heidelberg (2005)Bobenrieth, A.: Inconsistencias por qué no? Un estudio filosófico sobre la lógica paraconsistente. Premios Nacionales Colcultura. Tercer Mundo Editores. Magister Thesis, Universidad de los Andes, Santafé de Bogotá, Columbia (1995)Bosneag, A.-M., Brockmeyer, M.: A formal model for eventual consistency semantics. In: PDCS 2002, pp. 204–209. IASTED (2001)Browne, J.: Brewer’s cap theorem (2009). http://www.julianbrowne.com/article/viewer/brewers-cap-theoremCong, G., Fan, W., Geerts, F., Jia, X., Ma, S.: Improving data quality: consistency and accuracy. In: Proc. 33rd VLDB, pp. 315–326. ACM (2007)Dechter, R., van Beek, P.: Local and global relational consistency. Theor. Comput. Sci. 173(1), 283–308 (1997)Decker, H.: Translating advanced integrity checking technology to SQL. In: Doorn, J., Rivero, L. (eds.) Database integrity: challenges and solutions, pp. 203–249. Idea Group (2002)Decker, H.: Historical and computational aspects of paraconsistency in view of the logic foundation of databases. In: Bertossi, L., Katona, G.O.H., Schewe, K.-D., Thalheim, B. (eds.) Semantics in Databases 2001. LNCS, vol. 2582, pp. 63–81. Springer, Heidelberg (2003)Decker, H.: Answers that have integrity. In: Schewe, K.-D., Thalheim, B. (eds.) SDKB 2010. LNCS, vol. 6834, pp. 54–72. Springer, Heidelberg (2011)Decker, H.: New measures for maintaining the quality of databases. In: Murgante, B., Gervasi, O., Misra, S., Nedjah, N., Rocha, A.M.A.C., Taniar, D., Apduhan, B.O. (eds.) ICCSA 2012, Part IV. LNCS, vol. 7336, pp. 170–185. Springer, Heidelberg (2012)Decker, H.: A pragmatic approach to model, measure and maintain the quality of information in databases (2012). www.iti.upv.es/~hendrik/papers/ahrc-workshop_quality-of-data.pdf , www.iti.upv.es/~hendrik/papers/ahrc-workshop_quality-of-data_comments.pdf . Slides and comments presented at the Workshop on Information Quality. Univ, Hertfordshire, UKDecker, H.: Answers that have quality. In: Murgante, B., Misra, S., Carlini, M., Torre, C.M., Nguyen, H.-Q., Taniar, D., Apduhan, B.O., Gervasi, O. (eds.) ICCSA 2013, Part II. LNCS, vol. 7972, pp. 543–558. Springer, Heidelberg (2013)Decker, H.: Measure-based inconsistency-tolerant maintenance of database integrity. In: Schewe, K.-D., Thalheim, B. (eds.) SDKB 2013. LNCS, vol. 7693, pp. 149–173. Springer, Heidelberg (2013)Decker, H., Martinenghi, D.: Inconsistency-tolerant integrity checking. IEEE Transactions of Knowledge and Data Engineering 23(2), 218–234 (2011)Decker, H., Muñoz-Escoí, F.D.: Revisiting and improving a result on integrity preservation by concurrent transactions. In: Meersman, R., Dillon, T., Herrero, P. (eds.) OTM 2010. LNCS, vol. 6428, pp. 297–306. Springer, Heidelberg (2010)Dong, X.L., Berti-Equille, L., Srivastava, D.: Data fusion: resolving conflicts from multiple sources (2015). http://arxiv.org/abs/1503.00310Eswaran, K., Gray, J., Lorie, R., Traiger, I.: The notions of consistency and predicate locks in a database system. CACM 19(11), 624–633 (1976)Muñoz-Escoí, F.D., Ruiz-Fuertes, M.I., Decker, H., Armendáriz-Íñigo, J.E., de Mendívil, J.R.G.: Extending middleware protocols for database replication with integrity support. In: Meersman, R., Tari, Z. (eds.) OTM 2008, Part I. LNCS, vol. 5331, pp. 607–624. Springer, Heidelberg (2008)Fekete, A.: Consistency models for replicated data. In: Encyclopedia of Database Systems, pp. 450–451. Springer (2009)Fekete, A., Gupta, D., Lynch, V., Luchangco, N., Shvartsman, A.: Eventually-serializable data services. In: 15th PoDC, pp. 300–309. ACM (1996)Gilbert, S., Lynch, N.: Brewer’s conjecture and the feasibility of consistent, available, partition-tolerant web services. SIGACT News 33(2), 51–59 (2002)Golab, W., Rahman, M., Auyoung, A., Keeton, K., Li, X.: Eventually consistent: Not what you were expecting? ACM Queue, 12(1) (2014)Grant, J., Hunter, A.: Measuring inconsistency in knowledgebases. Journal of Intelligent Information Systems 27(2), 159–184 (2006)Gray, J., Lorie, R., Putzolu, G., Traiger, I.: Granularity of locks and degrees of consistency in a shared data base. In: Nijssen, G. (ed.) Modelling in Data Base Management Systems. North Holland (1976)Haerder, T., Reuter, A.: Principles of transaction-oriented database recovery. Computing Surveys 15(4), 287–317 (1983)Herlihy, M., Wing, J.: Linearizability: a correctness condition for concurrent objects. TOPLAS 12(3), 463–492 (1990)R. Ho. Design pattern for eventual consistency (2009). http://horicky.blogspot.com.es/2009/01/design-pattern-for-eventual-consistency.htmlIkeda, R., Park, H., Widom, J.: Provenance for generalized map and reduce workflows. In: CIDR (2011)Kempster, T., Stirling, C., Thanisch, P.: Diluting acid. SIGMoD Record 28(4), 17–23 (1999)Li, X., Dong, X.L., Meng, W., Srivastava, D.: Truth finding on the deep web: Is the problem solved? VLDB Endowment 6(2), 97–108 (2012)Lloyd, W., Freedman, M., Kaminsky, M., Andersen, D.: Don’t settle for eventual: scalable causal consistency for wide-area storage with cops. In: 23rd SOPS, pp. 401–416 (2011)Lomet, D.: Transactions: from local atomicity to atomicity in the cloud. In: Jones, C.B., Lloyd, J.L. (eds.) Dependable and Historic Computing. LNCS, vol. 6875, pp. 38–52. Springer, Heidelberg (2011)Monge, P., Contractor, N.: Theory of Communication Networks. Oxford University Press (2003)Nicolas, J.-M.: Logic for improving integrity checking in relational data bases. Acta Informatica 18, 227–253 (1982)Muñoz-Escoí, F.D., Irún, L., H. Decker: Database replication protocols. In: Encyclopedia of Database Technologies and Applications, pp. 153–157. IGI Global (2005)Oracle: Constraints. http://docs.oracle.com/cd/B19306_01/server.102/b14223/constra.htm (May 1, 2015)Ouzzani, M., Medjahed, B., Elmagarmid, A.: Correctness criteria beyond serializability. In: Encyclopedia of Database Systems, pp. 501–506. Springer (2009)Rosenkrantz, D., Stearns, R., Lewis, P.: Consistency and serializability in concurrent datanbase systems. SIAM J. Comput. 13(3), 508–530 (1984)Saito, Y., Shapiro, M.: Optimistic replication. JACM 37(1), 42–81 (2005)Sandhu, R.: On five definitions of data integrity. In: Proc. IFIP WG11.3 Workshop on Database Security, pp. 257–267. North-Holland (1994)Simmons, G.: Contemporary Cryptology: The Science of Information Integrity. IEEE Press (1992)Sivathanu, G., Wright, C., Zadok, E.: Ensuring data integrity in storage: techniques and applications. In: Proc. 12th Conf. on Computer and Communications Security, p. 26. ACM (2005)Svanks, M.: Integrity analysis: Methods for automating data quality assurance. Information and Software Technology 30(10), 595–605 (1988)Technet, M.: Data integrity. https://technet.microsoft.com/en-us/library/aa933058 (May 1, 2015)Terry, D.: Replicated data consistency explained through baseball. Technical report, Microsoft. MSR Technical Report (2011)Traiger, I., Gray, J., Galtieri, C., Lindsay, B.: Transactions and consistency in distributed database systems. ACM Trans. Database Syst. 7(3), 323–342 (1982)Vidyasankar, K.: Serializability. In: Encyclopedia of Database Systems, pp. 2626–2632. Springer (2009)Vogels, W.: Eventually consistent (2007). http://www.allthingsdistributed.com/2007/12/eventually_consistent.html . Other versions in ACM Queue 6(6), 14–19. http://queue.acm.org/detail.cfm?id=1466448 (2008) and CACM 52(1), 40–44 (2009)Wikipedia: Consistency model. http://en.wikipedia.org/wiki/Consistency_model (May 1, 2015)Wikipedia: Data integrity. http://en.wikipedia.org/wiki/Data_integrity (May 1, 2015)Wikipedia: Data quality. http://en.wikipedia.org/wiki/Data_quality (May 1, 2015)Yin, X., Han, J., Yu, P.: Truth discovery with multiple conflicting information providers on the web. IEEE Transactions of Knowledge and Data Engineering 20(6), 796–808 (2008)Young, G.: Quick thoughts on eventual consistency (2010). http://codebetter.com/gregyoung/2010/04/14/quick-thoughts-on-eventual-consistency/ (May 1, 2015
Answers that Have Integrity
[EN] Answers to queries in possibly inconsistent databases may
not have integrity. We formalize ‘has integrity’ on the basis of a definition
of ‘causes’. A cause of an answer is a minimal excerpt of the database
that explains why the answer has been given. An answer has integrity if
one of its causes does not overlap with any cause of integrity violation.Supported by FEDER and the Spanish grants TIN2009-14460-C03, TIN2010-17139.Decker, H. (2011). Answers that Have Integrity. Lecture Notes in Computer Science. 6834:54-72. https://doi.org/10.1007/978-3-642-23441-5S5472683
Measure-Based Inconsistency-Tolerant Maintenance of Database Integrity
[EN] To maintain integrity, constraint violations should be prevented or repaired. However, it may not be feasible to avoid inconsistency, or to repair all violations at once. Based on an abstract concept of violation measures, updates and repairs can be checked for keeping inconsistency bounded, such that integrity violations are guaranteed to never get out of control. This measure-based approach goes beyond conventional methods that are not meant to be applied in the presence of inconsistency. It also generalizes recently introduced concepts of inconsistency-tolerant integrity maintenance.Partially supported by FEDER and the Spanish grants TIN2009-14460-C03 and TIN2010-17139Decker, H. (2013). Measure-Based Inconsistency-Tolerant Maintenance of Database Integrity. Lecture Notes in Computer Science. 7693:149-173. https://doi.org/10.1007/978-3-642-36008-4_7S1491737693Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley (1995)Abiteboul, S., Vianu, V.: A transaction-based approach to relational database specification. JACM 36(4), 758–789 (1989)Afrati, F., Kolaitis, P.: Repair checking in inconsistent databases: algorithms and complexity. In: 12th ICDT, pp. 31–41. ACM Press (2009)Arenas, M., Bertossi, L., Chomicki, J.: Consistent query answers in inconsistent databases. In: PODS 1999, pp. 68–79. ACM Press (1999)Arieli, O., Denecker, M., Bruynooghe, M.: Distance semantics for database repair. Ann. Math. Artif. Intell. 50, 389–415 (2007)Arni-Bloch, N., Ralyté, J., Léonard, M.: Service–Driven Information Systems Evolution: Handling Integrity Constraints Consistency. In: Persson, A., Stirna, J. (eds.) PoEM 2009. LNBIP, vol. 39, pp. 191–206. Springer, Heidelberg (2009)Bauer, H.: Maß- und Integrationstheorie, 2. Auflage. De Gruyter (1992)Besnard, P., Hunter, A.: Quasi-Classical Logic: Non-Trivializable Classical Reasoning from Inconsistent Information. In: Froidevaux, C., Kohlas, J. (eds.) ECSQARU 1995. LNCS, vol. 946, pp. 44–51. Springer, Heidelberg (1995)Bohanon, P., Fan, W., Flaster, M., Rastogi, R.: A Cost-Based Model and Effective Heuristic for Repairing Constraints by Value Modification. In: Proc. SIGMOD 2005, pp. 143–154. ACM Press (2005)Ceri, S., Cochrane, R., Widom, J.: Practical Applications of Triggers and Constraints: Success and Lingering Issues. In: Proc. 26th VLDB, pp. 254–262. Morgan Kaufmann (2000)Chakravarthy, U., Grant, J., Minker, J.: Logic-based Approach to Semantic Query Optimization. Transactions on Database Systems 15(2), 162–207 (1990)Chomicki, J.: Consistent Query Answering: Five Easy Pieces. In: Schwentick, T., Suciu, D. (eds.) ICDT 2007. LNCS, vol. 4353, pp. 1–17. Springer, Heidelberg (2006)Christiansen, H., Martinenghi, D.: On simplification of database integrity constraints. Fundamenta Informaticae 71(4), 371–417 (2006)Clark, K.: Negation as Failure. In: Gallaire, H., Minker, J. (eds.) Logic and Data Bases, pp. 293–322. Plenum Press (1978)Curino, C., Moon, H., Deutsch, A., Zaniolo, C.: Update Rewriting and Integrity Constraint Maintenance in a Schema Evolution Support System: PRISM++. PVLDB 4, 117–128 (2010)Dawson, J.: The compactness of first-order logic: From Gödel to Lindström. History and Philosophy of Logic 14(1), 15–37 (1993)Decker, H.: The Range Form of Databases and Queries or: How to Avoid Floundering. In: Proc. 5th ÖGAI. Informatik-Fachberichte, vol. 208, pp. 114–123. Springer (1989)Decker, H.: Drawing Updates From Derivations. In: Kanellakis, P.C., Abiteboul, S. (eds.) ICDT 1990. LNCS, vol. 470, pp. 437–451. Springer, Heidelberg (1990)Decker, H.: Extending Inconsistency-Tolerant Integrity Checking by Semantic Query Optimization. In: Bhowmick, S.S., Küng, J., Wagner, R. (eds.) DEXA 2008. LNCS, vol. 5181, pp. 89–96. Springer, Heidelberg (2008)Decker, H.: Answers That Have Integrity. In: Schewe, K.-D., Thalheim, B. (eds.) SDKB 2010. LNCS, vol. 6834, pp. 54–72. Springer, Heidelberg (2011)Decker, H.: Causes of the Violation of Integrity Constraints for Supporting the Quality of Databases. In: Murgante, B., Gervasi, O., Iglesias, A., Taniar, D., Apduhan, B.O. (eds.) ICCSA 2011, Part V. LNCS, vol. 6786, pp. 283–292. Springer, Heidelberg (2011)Decker, H.: Inconsistency-tolerant Integrity Checking based on Inconsistency Metrics. In: König, A., Dengel, A., Hinkelmann, K., Kise, K., Howlett, R.J., Jain, L.C. (eds.) KES 2011, Part II. LNCS, vol. 6882, pp. 548–558. Springer, Heidelberg (2011)Decker, H.: Partial Repairs that Tolerate Inconsistency. In: Eder, J., Bielikova, M., Tjoa, A.M. (eds.) ADBIS 2011. LNCS, vol. 6909, pp. 389–400. Springer, Heidelberg (2011)Decker, H.: Consistent Explanations of Answers to Queries in Inconsistent Knowledge Bases. In: Roth-Berghofer, T., Tintarev, N., Leake, D. (eds.) Explanation-aware Computing, Proc. IJCAI 2011 Workshop ExaCt 2011, pp. 71–80 (2011), http://exact2011.workshop.hm/index.phpDecker, H., Martinenghi, D.: Classifying integrity checking methods with regard to inconsistency tolerance. In: Proc. PPDP 2008, pp. 195–204. ACM Press (2008)Decker, H., Martinenghi, D.: Modeling, Measuring and Monitoring the Quality of Information. In: Heuser, C.A., Pernul, G. (eds.) ER 2009. LNCS, vol. 5833, pp. 212–221. Springer, Heidelberg (2009)Decker, H., Martinenghi, D.: Inconsistency-tolerant Integrity Checking. IEEE TKDE 23(2), 218–234 (2011)Decker, H., Muñoz-Escoí, F.D.: Revisiting and Improving a Result on Integrity Preservation by Concurrent Transactions. In: Meersman, R., Dillon, T., Herrero, P. (eds.) OTM 2010 Workshops. LNCS, vol. 6428, pp. 297–306. Springer, Heidelberg (2010)Dung, P., Kowalski, R., Toni, F.: Dialectic Proof Procedures for Assumption-based Admissible Argumentation. Artificial Intelligence 170(2), 114–159 (2006)Ebbinghaus, H.-D., Flum, J.: Finite Model Theory, 2nd edn. Springer (2006)Embury, S., Brandt, S., Robinson, J., Sutherland, I., Bisby, F., Gray, A., Jones, A., White, R.: Adapting integrity enforcement techniques for data reconciliation. Information Systems 26, 657–689 (2001)Enderton, H.: A Mathematical Introduction to Logic, 2nd edn. Academic Press (2001)Eiter, T., Fink, M., Greco, G., Lembo, D.: Repair localization for query answering from inconsistent databases. ACM TODS 33(2), article 10 (2008)Furfaro, F., Greco, S., Molinaro, C.: A three-valued semantics for querying and repairing inconsistent databases. Ann. Math. Artif. Intell. 51(2-4), 167–193 (2007)Grant, J., Hunter, A.: Measuring the Good and the Bad in Inconsistent Information. In: Proc. 22nd IJCAI, pp. 2632–2637 (2011)Greco, G., Greco, S., Zumpano, E.: A logical framework for querying and repairing inconsistent databases. IEEE TKDE 15(6), 1389–1408 (2003)Guessoum, A., Lloyd, J.: Updating knowledge bases. New Generation Computing 8(1), 71–89 (1990)Guessoum, A., Lloyd, J.: Updating knowledge bases II. New Generation Computing 10(1), 73–100 (1991)Gupta, A., Sagiv, Y., Ullman, J., Widom, J.: Constraint checking with partial information. In: Proc. PODS 1994, pp. 45–55. ACM Press (1994)Hunter, A.: Measuring Inconsistency in Knowledge via Quasi-Classical Models. In: Proc. 18th AAAI &14th IAAI, pp. 68–73 (2002)Hunter, A., Konieczny, S.: Approaches to Measuring Inconsistent Information. In: Bertossi, L., Hunter, A., Schaub, T. (eds.) Inconsistency Tolerance. LNCS, vol. 3300, pp. 191–236. Springer, Heidelberg (2005)Hunter, A., Konieczny, S.: Measuring inconsistency through minimal inconsistent sets. In: Brewka, G., Lang, J. (eds.) Principles of Knowledge Representation and Reasoning (Proc. 11th KR), pp. 358–366. AAAI Press (2008)Hunter, A., Konieczny, S.: On the measure of conflicts: Shapley Inconsistency Values. Artificial Intelligence 174, 1007–1026 (2010)Kakas, A., Mancarella, P.: Database updates through abduction. In: Proc. 16th VLDB, pp. 650–661. Morgan Kaufmann (1990)Kakas, A., Kowalski, R., Toni, F.: The role of Abduction in Logic Programming. In: Gabbay, D., Hogger, C., Robinson, J.A. (eds.) Handbook of Logic in Artificial Intelligence and Logic Programming, vol. 5, pp. 235–324. Oxford University Press (1998)Lee, S.Y., Ling, T.W.: Further improvements on integrity constraint checking for stratifiable deductive databases. In: Proc. VLDB 1996, pp. 495–505. Morgan Kaufmann (1996)Lehrer, K.: Relevant Deduction and Minimally Inconsistent Sets. Journal of Philosophy 3(2,3), 153–165 (1973)Mu, K., Liu, W., Jin, Z., Bell, D.: A Syntax-based Approach to Measuring the Degree of Inconsistency for Belief Bases. J. Approx. Reasoning 52(7), 978–999 (2011)Lloyd, J., Sonenberg, L., Topor, R.: Integrity constraint checking in stratified databases. J. Logic Programming 4(4), 331–343 (1987)Lozinskii, E.: Resolving contradictions: A plausible semantics for inconsistent systems. J. Automated Reasoning 12(1), 1–31 (1994)Ma, Y., Qi, G., Hitzler, P.: Computing inconsistency measure based on paraconsistent semantics. J. Logic Computation 21(6), 1257–1281 (2011)Martinenghi, D., Christiansen, H.: Transaction Management with Integrity Checking. In: Andersen, K.V., Debenham, J., Wagner, R. (eds.) DEXA 2005. LNCS, vol. 3588, pp. 606–615. Springer, Heidelberg (2005)Martinenghi, D., Christiansen, H., Decker, H.: Integrity Checking and Maintenance in Relational and Deductive Databases and Beyond. In: Ma, Z. (ed.) Intelligent Databases: Technologies and Applications, pp. 238–285. IGI Global (2006)Martinez, M.V., Pugliese, A., Simari, G.I., Subrahmanian, V.S., Prade, H.: How Dirty Is Your Relational Database? An Axiomatic Approach. In: Mellouli, K. (ed.) ECSQARU 2007. LNCS (LNAI), vol. 4724, pp. 103–114. Springer, Heidelberg (2007)Meyer, J., Wieringa, R. (eds.): Deontic Logic in Computer Science. Wiley (1994)Nicolas, J.M.: Logic for improving integrity checking in relational data bases. Acta Informatica 18, 227–253 (1982)Plexousakis, D., Mylopoulos, J.: Accommodating Integrity Constraints During Database Design. In: Apers, P.M.G., Bouzeghoub, M., Gardarin, G. (eds.) EDBT 1996. LNCS, vol. 1057, pp. 495–513. Springer, Heidelberg (1996)Rahm, E., Do, H.: Data Cleaning: Problems and Current Approaches. Data Engineering Bulletin 23(4), 3–13 (2000)Sadri, F., Kowalski, R.: A theorem-proving approach to database integrity. In: Minker, J. (ed.) Foundations of Deductive Databases and Logic Programming, pp. 313–362. Morgan Kaufmann (1988)Thimm, M.: Measuring Inconsistency in Probabilistic Knowledge Bases. In: Proc. 25th UAI, pp. 530–537. AUAI Press (2009)Vardi, M.: On the integrity of databases with incomplete information. In: Proc. 5th PODS, pp. 252–266. ACM Press (1986)Wijsen, J.: Database repairing using updates. ACM Trans. Database Syst. 30(3), 722–768 (2005
- …