38,760 research outputs found

    Optomechanical and Crystallization Phenomena Visualized with 4D Electron Microscopy: Interfacial Carbon Nanotubes on Silicon Nitride

    Get PDF
    With ultrafast electron microscopy (UEM), we report observation of the nanoscopic crystallization of amorphous silicon nitride, and the ultrashort optomechanical motion of the crystalline silicon nitride at the interface of an adhering carbon nanotube network. The in situ static crystallization of the silicon nitride occurs only in the presence of an adhering nanotube network, thus indicating their mediating role in reaching temperatures close to 1000 °C when exposed to a train of laser pulses. Under such condition, 4D visualization of the optomechanical motion of the specimen was followed by quantifying the change in diffraction contrast of crystalline silicon nitride, to which the nanotube network is bonded. The direction of the motion was established from a tilt series correlating the change in displacement with both the tilt angle and the response time. Correlation of nanoscopic motion with the picosecond atomic-scale dynamics suggests that electronic processes initiated in the nanotubes are responsible for the initial ultrafast optomechanical motion. The time scales accessible to UEM are 12 orders of magnitude shorter than those traditionally used to study the optomechanical motion of carbon nanotube networks, thus allowing for distinctions between the different electronic and thermal mechanisms to be made

    Linearized large signal modeling, analysis, and control design of phase-controlled series-parallel resonant converters using state feedback

    Get PDF
    This paper proposes a linearized large signal state-space model for the fixed-frequency phase-controlled series-parallel resonant converter. The proposed model utilizes state feedback of the output filter inductor current to perform linearization. The model combines multiple-frequency and average state-space modeling techniques to generate an aggregate model with dc state variables that are relatively easier to control and slower than the fast resonant tank dynamics. The main objective of the linearized model is to provide a linear representation of the converter behavior under large signal variation which is suitable for faster simulation and large signal estimation/calculation of the converter state variables. The model also provides insight into converter dynamics as well as a simplified reduced order transfer function for PI closed-loop design. Experimental and simulation results from a detailed switched converter model are compared with the proposed state-space model output to verify its accuracy and robustness

    Dynamics of clusters: From elementary to biological structures

    Get PDF
    Between isolated atoms or molecules and bulk materials there lies a class of unique structures, known as clusters, that consist of a few to hundreds of atoms or molecules. Within this range of "nanophase," many physical and chemical properties of the materials evolve as a function of cluster size, and materials may exhibit novel properties due to quantum confinement effects. Understanding these phenomena is in its own rights fundamental, but clusters have the additional advantage of being controllable model systems for unraveling the complexity of condensed-phase and biological structures, not to mention their vanguard role in defining nanoscience and nanotechnology. Over the last two decades, much progress has been made, and this short overview highlights our own involvement in developing cluster dynamics, from the first experiments on elementary systems to model systems in the condensed phase, and on to biological structures

    Nanofriction Visualized in Space and Time by 4D Electron Microscopy

    Get PDF
    In this letter, we report a novel method of visualizing nanoscale friction in space and time using ultrafast electron microscopy (UEM). The methodology is demonstrated for a nanoscale movement of a single crystal beam on a thin amorphous membrane of silicon nitride. The movement results from the elongation of the crystal beam, which is initiated by a laser (clocking) pulse, and we examined two types of beams: those that are free of friction and the others which are fixed on the substrate. From observations of image change with time we are able to decipher the nature of microscopic friction at the solid−solid interface: smooth-sliding and periodic slip-stick friction. At the molecular and nanoscale level, and when a force parallel to the surface (expansion of the beam) is applied, the force of gravity as a (perpendicular) load cannot explain the observed friction. An additional effective load being 6 orders of magnitude larger than that due to gravity is attributed to Coulombic/van der Waals adhesion at the interface. For the case under study, metal−organic crystals, the gravitational force is on the order of piconewtons whereas the static friction force is 0.5 μN and dynamic friction is 0.4 μN; typical beam expansions are 50 nm/nJ for the free beam and 10 nm/nJ for the fixed beam. The method reported here should have applications for other materials, and for elucidating the origin of periodic and chaotic friction and their relevance to the efficacy of nano(micro)-scale devices

    Irreversible Chemical Reactions Visualized in Space and Time with 4D Electron Microscopy

    Get PDF
    We report direct visualization of irreversible chemical reactions in space and time with 4D electron microscopy. Specifically, transient structures are imaged following electron transfer in copper-tetracyanoquinodimethane [Cu(TCNQ)] crystals, and the oxidation/reduction process, which is irreversible, is elucidated using the single-shot operation mode of the microscope. We observed the fast, initial structural rearrangement due to Cu^+ reduction and the slower growth of metallic Cu^0 nanocrystals (Ostwald ripening) following initiation of the reaction with a pulse of visible light. The mechanism involves electron transfer from TCNQ anion-radical to Cu^+, morphological changes, and thermally driven growth of discrete Cu^0 nanocrystals embedded in an amorphous carbon skeleton of TCNQ. This in situ visualization of structures during reactions should be extendable to other classes of reactive systems
    • …
    corecore