883 research outputs found

    Variation of the broad X-ray iron line in MCG-6-30-15 during a flare

    Get PDF
    We report results on the broad iron emission line of the Seyfert galaxy MCG-6-30-15, obtained from the second long ASCA observation in 1997. The time-averaged profile of the broad line is very similar to that seen with ASCA in 1994, so confirming the detailed model fit then obtained. A bright flare is seen in the light curve, during which the continuum was soft. At that time the emission line peaks around 5 keV and most of its emission is shifted below 6 keV with no component detected at 6.4 keV (EW<60 eV). This can be interpreted as the result of an extraordinarily large gravitational redshift due to a dominant flare occurring very close to the black hole at a radius of <5m.Comment: 5 pages, accepted or publication in MNRAS Letter

    Electronic Structure of Charge- and Spin-controlled Sr_{1-(x+y)}La_{x+y}Ti_{1-x}Cr_{x}O_{3}

    Get PDF
    We present the electronic structure of Sr_{1-(x+y)}La_{x+y}Ti_{1-x}Cr_{x}O_{3} investigated by high-resolution photoemission spectroscopy. In the vicinity of Fermi level, it was found that the electronic structure were composed of a Cr 3d local state with the t_{2g}^{3} configuration and a Ti 3d itinerant state. The energy levels of these Cr and Ti 3d states are well interpreted by the difference of the charge-transfer energy of both ions. The spectral weight of the Cr 3d state is completely proportional to the spin concentration x irrespective of the carrier concentration y, indicating that the spin density can be controlled by x as desired. In contrast, the spectral weight of the Ti 3d state is not proportional to y, depending on the amount of Cr doping.Comment: 4 pages, 3 figures. Accepted for publication in Phys. Rev. Let

    ASCA PV observations of the Seyfert 2 galaxy NGC 4388: the obscured nucleus and its X-ray emission

    Get PDF
    We present results on the Seyfert 2 galaxy NGC4388 in the Virgo cluster observed with ASCA during its PV phase. The 0.5-10 keV X-ray spectrum consists of multiple components; (1) a continuum component heavily absorbed by a column density NH = 4E23 cm-2 above 3 keV; (2) a strong 6.4 keV line (EW = 500 eV); (3) a weak flat continuum between 1 and 3 keV; and (4) excess soft X-ray emission below 1 keV. The detection of strong absorption for the hard X-ray component is firm evidence for an obscured active nucleus in this Seyfert 2 galaxy. The absorption corrected X-ray luminosity is about 2E42 erg/s. This is the first time that the fluorescent iron-K line has been detected in this object. The flat spectrum in the intermediate energy range may be a scattered continuum from the central source. The soft X-ray emission below 1 keV can be thermal emission from a temperature kT = 0.5 keV, consistent with the spatially extended emission observed by ROSAT HRI. However, the low abundance (0.05 Zs) and high mass flow rate required for the thermal model and an iron-K line stronger than expected from the obscuring torus model are puzzling. An alternative consistent solution can be obtained if the central source was a hundred times more luminous over than a thousand years ago. All the X-ray emission below 3 keV is then scattered radiation.Comment: 9 pages, 5 Postscript figures, to be published in MNRA

    Broad Band X-Ray Observations of the Narrow Line X-Ray Galaxy NGC 5506

    Get PDF
    We present a detailed analysis of broad band X-ray data of the Seyfert 2 galaxy NGC5506. 2-10 keV band are detected during a 1-day ASCA observation, while no significant change in the 2-10 keV continuum shape is found. The ASCA spectrum consists of an absorbed power-law, a 'soft excess' below 2 keV, and an Fe Kα\alpha emission line at 6.4 keV. The 'soft excess' can be well described by either thermal emission from very low abundance material at a temperature kT≃\simeq0.8 keV, or scattered/leaking flux from the primary power-law plus a small amount of thermal emission. Analysis of ROSAT HRI data reveals that the soft X-ray emission is extended on kpc scales in this object, and the extended component may account for most of the soft X-ray excess observed by the ASCA. The result suggests that in this type 2 AGN, the 'soft excess' at least partly comes from an extended region, imposing serious problem for the model in which the source is partially covered. Fe Kα\alpha profile is complex and can not be satisfactorily modeled by a single gaussian. Models of either double gaussians, or a narrow gaussian plus a line from a relativistic accretion disk viewed at an inclination of about 40±10∘\pm10^\circ provide good fits to the data. However, the inclination of the disk can be substantially larger if there is a small amount of excessive Fe K edge absorption. The intermediate inclinations for NLXGs are consistent with the ideas that the inner accretion disk is aligned with the outer obscuring torus.Comment: 8 pages, 5 postscript figures. to appear in Astrophy. J., 1999, April 2

    Detection of an X-ray periodicity in the Seyfert galaxy IRAS18325-5926

    Get PDF
    We report the detection of a 58 ks (16 hr) periodicity in the 0.5-10 keV X-ray light curve of the Seyfert galaxy IRAS18325-5926 (Fairall49), obtained from a 5-day ASCA observation. Nearly 9 cycles of the periodic variation are seen; it shows no strong energy dependence and has an amplitude of about 15 per cent. Unlike most other well-studied Seyfert galaxies, there is no evidence for strong power-law red noise in the X-ray power spectrum of IRAS18325-5926. Scaling from the QPOs found in Galactic black hole candidates suggests that the mass of the black hole in IRAS18325-5926 is (6-40) million solar masses.Comment: 5 pages, 4 Postscript figures, to be published in MNRA

    On broad iron K-alpha lines in Seyfert 1 galaxies

    Full text link
    The X-ray spectrum obtained by Tanaka et al from a long observation of the active galaxy MCG−6−30−15-6-30-15 shows a broad iron Kα\alpha line skewed to low energies. The simplest interpretation of the shape of the line is that it is due to doppler and gravitational redshifts from the inner parts of a disk about a massive black hole. Similarly broad lines are evident in shorter observations of several other active galaxies. In this paper we investigate other line broadening and skewing mechanisms such as Comptonization in cold gas and doppler shifts from outflows. We have also fitted complex spectral models to the data of MCG−6−30−15-6-30-15 to see whether the broad skewed line can be mimicked well by other absorption or emission features. No satisfactory mechanism or spectral model is found, thus strengthening the relativistic disk line model.Comment: uuencoded compressed postscript. The preprint is also available at http://www.ast.cam.ac.uk/preprint/PrePrint.htm

    The variable OVIII Warm Absorber in MCG-6-30-15

    Get PDF
    We present the results of a 4 day ASCA observation of the Seyfert galaxy MCG-6-30-15, focussing on the nature of the X-ray absorption by the warm absorber, characterizd by the K-edges of the intermediately ionized oxygen, OVII and OVIII. We confirm that the column density of OVIII changes on a timescale of ∌104\sim 10^4~s when the X-ray continuum flux decreases. The significant anti-correlation of column density with continuum flux gives direct evidence that the warm absorber is photoionized by the X-ray continuum. From the timescale of the variation of the OVIII column density, we estimate that it originates from gas within a radius of about 10^{17}\cm of the central engine. In contrast, the depth of the OVII edge shows no response to the continuum flux, which indicates that it originates in gas at larger radii. Our results strongly suggest that there are two warm absorbing regions; one located near or within the Broad Line Region, the other associated with the outer molecular torus, scattering medium or Narrow Line Region.Comment: 8 pages (including figures) uuencoded gziped PS file. Submitted to Publications of the Astronomical Society of Japa

    Isothermal Shock Formation in Non-Equatorial Accretion Flows around Kerr Black Holes

    Full text link
    We explore isothermal shock formation in non-equatorial, adiabatic accretion flows onto a rotating black hole, with possible application to some active galactic nuclei (AGNs). The isothermal shock jump conditions as well as the regularity condition, previously developed for one-dimensional (1D) flows in the equatorial plane, are extended to two-dimensional (2D), non-equatorial flows, to explore possible geometrical effects. The basic hydrodynamic equations with these conditions are self-consistently solved in the context of general relativity to explore the formation of stable isothermal shocks. We find that strong shocks are formed in various locations above the equatorial plane, especially around a rapidly-rotating black hole with the prograde flows (rather than a Schwarzschild black hole). The retrograde flows are generally found to develop weaker shocks. The energy dissipation across the shock in the hot non-equatorial flows above the cooler accretion disk may offer an attractive illuminating source for the reprocessed features, such as the iron fluorescence lines, which are often observed in some AGNs.Comment: 22 pages with 11 figures, presented at 5th international conference on high energy density laboratory astrophysics in Tucson, Arizona. accepted to Ap
    • 

    corecore