1,014 research outputs found
Application of the Limit Cycle Model to Star Formation Histories in Spiral Galaxies: Variation among Morphological Types
We propose a limit-cycle scenario of star formation history for any
morphological type of spiral galaxies. It is known observationally that the
early-type spiral sample has a wider range of the present star formation rate
(SFR) than the late-type sample. This tendency is understood in the framework
of the limit-cycle model of the interstellar medium (ISM), in which the SFR
cyclically changes in accordance with the temporal variation of the mass
fraction of the three ISM components. When the limit-cycle model of the ISM is
applied, the amplitude of variation of the SFR is expected to change with the
supernova (SN) rate. Observational evidence indicates that the early-type
spiral galaxies show smaller rates of present SN than late-type ones. Combining
this evidence with the limit-cycle model of the ISM, we predict that the
early-type spiral galaxies show larger amplitudes in their SFR variation than
the late-types. Indeed, this prediction is consistent with the observed wider
range of the SFR in the early-type sample than in the late-type sample. Thus,
in the framework of the limit-cycle model of the ISM, we are able to interpret
the difference in the amplitude of SFR variation among the morphological
classes of spiral galaxies.Comment: 12 pages LaTeX, to appear in A
Supernova Explosions in the Early Universe: Evolution of Radiative Remnants and the Halo Destruction Efficiency
We study the evolution of supernova (SN) remnants of the first stars, taking
proper account of the radiative feedback of the progenitor stars on the
surroundings. We carry out a series of one-dimensional hydrodynamic simulations
with radiative cooling, starting from initial configurations that are drawn
from the results of our earlier radiation hydrodynamic simulations of the first
HII regions. In low-mass (< 10^6 M_sun) halos, the stellar radiation
significantly reduces the ambient gas density prior to the SN explosion. The
blastwave quickly propagates over the halo's virial radius, leading to complete
evacuation of the gas even with the input energy of 10^50 erg. We find that a
large fraction of the remnant's thermal energy is lost in 0.1-10 Myr by line
cooling, whereas, for larger explosion energies, the remnant expands even more
rapidly with decreasing interior density, and cools predominantly via inverse
Compton process. In higher mass halos, the gas density near the explosion site
remains high and the SN shock is heavily confined; the thermal energy of the
remnant is quickly radiated away by free-free emission, even if the total input
energy exceeds the binding energy of halos by two orders of magnitude. We show
that the efficiency of halo destruction is determined not only by the explosion
energy but also by the gas density profile, and thus controlled by radiative
feedback prior to the explosion. Several implications of our results for the
formation of first quasars and second-generation stars in the universe are also
discussed.Comment: 13 pages, 11 embedded figures. Accepted for publication in Ap
A perception and manipulation system for collecting rock samples
An important part of a planetary exploration mission is to collect and analyze surface samples. As part of the Carnegie Mellon University Ambler Project, researchers are investigating techniques for collecting samples using a robot arm and a range sensor. The aim of this work is to make the sample collection operation fully autonomous. Described here are the components of the experimental system, including a perception module that extracts objects of interest from range images and produces models of their shapes, and a manipulation module that enables the system to pick up the objects identified by the perception module. The system was tested on a small testbed using natural terrain
On the Decelerating Shock Instability of Plane-Parallel Slab with Finite Thickness
Dynamical stability of the shock compressed layer with finite thickness is
investigated. It is characterized by self-gravity, structure, and shock
condition at the surfaces of the compressed layer. At one side of the shocked
layer, its surface condition is determined via the ram pressure, while at the
other side the thermal pressure supports its structure. When the ram pressure
dominates the thermal pressure, we expect deceleration of the shocked layer.
Especially, in this paper, we examine how the stratification of the
decelerating layer has an effect on its dynamical stability. Performing the
linear perturbation analysis, a {\it more general} dispersion relation than the
previous one obtained by one of the authors is derived. It gives us an
interesting information about the stability of the decelerating layer.
Importantly, the DSI (Decelerating Shock Instability) and the gravitational
instability are always incompatible. We also consider the evolution effect of
the shocked layer. In the early stages of its evolution, only DSI occurs. On
the contrary, in the late stages, it is possible for the shocked layer to be
unstable for the DSI (in smaller scale) and the gravitational instability (in
larger scale). Furthermore, we find there is a stable range of wavenumbers
against both the DSI and the gravitational instability between respective
unstable wavenumber ranges. These stable modes suggest the ineffectiveness of
DSI for the fragmentation of the decelerating slab.Comment: 17 pages, 6 figures. The Astrophysical Journal Vol.532 in pres
Chemical Evolution of the Galaxy Based on the Oscillatory Star Formation History
We model the star formation history (SFH) and the chemical evolution of the
Galactic disk by combining an infall model and a limit-cycle model of the
interstellar medium (ISM). Recent observations have shown that the SFH of the
Galactic disk violently variates or oscillates. We model the oscillatory SFH
based on the limit-cycle behavior of the fractional masses of three components
of the ISM. The observed period of the oscillation ( Gyr) is reproduced
within the natural parameter range. This means that we can interpret the
oscillatory SFH as the limit-cycle behavior of the ISM. We then test the
chemical evolution of stars and gas in the framework of the limit-cycle model,
since the oscillatory behavior of the SFH may cause an oscillatory evolution of
the metallicity. We find however that the oscillatory behavior of metallicity
is not prominent because the metallicity reflects the past integrated SFH. This
indicates that the metallicity cannot be used to distinguish an oscillatory SFH
from one without oscillations.Comment: 21 pages LaTeX, to appear in Ap
Formation of Sub-galactic Clouds under UV Background Radiation
The effects of the UV background radiation on the formation of sub-galactic
clouds are studied by means of one-dimensional hydrodynamical simulations. The
radiative transfer of the ionizing photons due to the absorption by HI, HeI and
HeII, neglecting the emission, is explicitly taken into account. We find that
the complete suppression of collapse occurs for the clouds with circular
velocities typically in the range V_c \sim 15-40 km/s and the 50% reduction in
the cooled gas mass with V_c \sim 20-55 km/s. These values depend most
sensitively on the collapse epoch of the cloud, the shape of the UV spectrum,
and the evolution of the UV intensity. Compared to the optically thin case,
previously investigated by Thoul & Weinberg (1996), the absorption of the
external UV photon by the intervening medium systematically lowers the above
threshold values by \Delta V_c \sim 5 km/s. Whether the gas can contract or
keeps expanding is roughly determined by the balance between the gravitational
force and the thermal pressure gradient when it is maximally exposed to the
external UV flux. Based on our simulation results, we discuss a number of
implications on galaxy formation, cosmic star formation history, and the
observations of quasar absorption lines. In Appendix, we derive analytical
formulae for the photoionization coefficients and heating rates, which
incorporate the frequency/direction-dependent transfer of external photons.Comment: 38 pages, 16 figures, accepted for publication in Ap
Effect of cation size variance on spin and orbital order in Eu(LaY)VO
We have investigated the -ion ( = rare earth or Y) size variance effect
on spin/orbital order in Eu(LaY)VO. The
size variance disturbs one-dimensional orbital correlation in -type
spin/-type orbital ordered states and suppresses this spin/orbital order. In
contrast, it stabilizes the other spin/orbital order. The results of neutron
and resonant X-ray scattering denote that in the other ordered phase, the
spin/orbital patterns are -type/-type, respectively.Comment: 4 pages, 4 figures, accepted to Rapid Communication in Physical
Review
Charge excitations associated with charge stripe order in the 214-type nickelate and superconducting cuprate
Charge excitations were studied for stipe-ordered 214 compounds,
LaSrNiO and 1/8-doped La(Ba, Sr)CuO
using resonant inelastic x-ray scattering in hard x-ray regime. We have
observed charge excitations at the energy transfer of 1 eV with the momentum
transfer corresponding to the charge stripe spatial period both for the
diagonal (nikelate) and parallel (cuprates) stripes. These new excitations can
be interpreted as a collective stripe excitation or charge excitonic mode to a
stripe-related in-gap state.Comment: 5 pages, 4 figure
- âŠ