5,883 research outputs found
Gravitational Radiation from a Naked Singularity -- Odd-Parity Perturbation --
It has been suggested that a naked singularity may be a good candidate for a
strong gravitational wave burster. The naked singularity occurs in the generic
collapse of an inhomogeneous dust ball. We study odd-parity mode of
gravitational waves from a naked singularity of the Lema\^{\i}tre-Tolman-Bondi
space-time. The wave equation for gravitational waves are solved by numerical
integration using the single null coordinate. The result is that the naked
singularity is not a strong source of the odd-parity gravitational radiation
although the metric perturbation grows in the central region. Therefore, the
Cauchy horizon in this space-time would be marginally stable against odd-parity
perturbations.Comment: 14 pages, 7 figures, to be published in Prog. Theor. Phys. Final
version, with minor changes. Reference 13 adde
Naked Singularity Explosion
It is known that the gravitational collapse of a dust ball results in naked
singularity formation from an initial density profile which is physically
reasonable. In this paper, we show that explosive radiation is emitted during
the formation process of the naked singularity.Comment: 6 pages, 3 figures, Accepted for Publication in Phys. Rev. D as a
Rapid Communicatio
Physical aspects of naked singularity explosion - How does a naked singularity explode? --
The behaviors of quantum stress tensor for the scalar field on the classical
background of spherical dust collapse is studied. In the previous works
diverging flux of quantum radiation was predicted. We use the exact expressions
in a 2D model formulated by Barve et al. Our present results show that the back
reaction does not become important during the semiclassical phase. The
appearance of the naked singularity would not be affected by this quantum field
radiation. To predict whether the naked singularity explosion occurs or not we
need the theory of quantum gravity. We depict the generation of the diverging
flux inside the collapsing star. The quantum energy is gathered around the
center positively. This would be converted to the diverging flux along the
Cauchy horizon. The ingoing negative flux crosses the Cauchy horizon. The
intensity of it is divergent only at the central naked singularity. This
diverging negative ingoing flux is balanced with the outgoing positive
diverging flux which propagates along the Cauchy horizon. After the replacement
of the naked singularity to the practical high density region the instantaneous
diverging radiation would change to more milder one with finite duration.Comment: 18 pages, 16 figure
- …
