198 research outputs found
Experimental realization of the one qubit Deutsch-Jozsa algorithm in a quantum dot
We perform quantum interference experiments on a single self-assembled
semiconductor quantum dot. The presence or absence of a single exciton in the
dot provides a qubit that we control with femtosecond time resolution. We
combine a set of quantum operations to realize the single-qubit Deutsch-Jozsa
algorithm. The results show the feasibility of single qubit quantum logic in a
semiconductor quantum dot using ultrafast optical control.Comment: REVTex4, 4 pages, 3 figures. Now includes more details about the
dephasing in the quantum dots. The introduction has been reworded for
clarity. Minor readability fixe
Observation of the Kohn anomaly near the K point of bilayer graphene
The dispersion of electrons and phonons near the K point of bilayer graphene
was investigated in a resonant Raman study using different laser excitation
energies in the near infrared and visible range. The electronic structure was
analyzed within the tight-binding approximation, and the
Slonczewski-Weiss-McClure (SWM) parameters were obtained from the analysis of
the dispersive behavior of the Raman features. A softening of the phonon
branches was observed near the K point, and results evidence the Kohn anomaly
and the importance of considering electron-phonon and electron-electron
interactions to correctly describe the phonon dispersion in graphene systems.Comment: 4 pages, 4 figure
1D Exciton Spectroscopy of Semiconductor Nanorods
We have theoretically shown that optical properties of semiconductor nanorods
are controlled by 1D excitons. The theory, which takes into account anisotropy
of spacial and dielectric confinement, describes size dependence of interband
optical transitions, exciton binding energies. We have demonstrated that the
fine structure of the ground exciton state explains the linear polarization of
photoluminescence. Our results are in good agreement with the measurements in
CdSe nanorods
Decoherence and Relaxation of a Quantum Bit in the Presence of Rabi Oscillations
Dissipative dynamics of a quantum bit driven by a strong resonant field and
interacting with a heat bath is investigated. We derive generalized Bloch
equations and find modifications of the qubit's damping rates caused by Rabi
oscillations. Nonequilibrium decoherence of a phase qubit inductively coupled
to a LC-circuit is considered as an illustration of the general results. It is
argued that recent experimental results give a clear evidence of effective
suppression of decoherence in a strongly driven flux qubit.Comment: 14 pages; misprints correcte
On the inner Double-Resonance Raman scattering process in bilayer graphene
The dispersion of phonons and the electronic structure of graphene systems
can be obtained experimentally from the double-resonance (DR) Raman features by
varying the excitation laser energy. In a previous resonance Raman
investigation of graphene, the electronic structure was analyzed in the
framework of the Slonczewski-Weiss-McClure (SWM) model, considering the outer
DR process. In this work we analyze the data considering the inner DR process,
and obtain SWM parameters that are in better agreement with those obtained from
other experimental techniques. This result possibly shows that there is still a
fundamental open question concerning the double resonance process in graphene
systems.Comment: 5 pages, 3 figure
Resonant nature of phonon-induced damping of Rabi oscillations in quantum dots
Optically controlled coherent dynamics of charge (excitonic) degrees of
freedom in a semiconductor quantum dot under the influence of lattice dynamics
(phonons) is discussed theoretically. We show that the dynamics of the lattice
response in the strongly non-linear regime is governed by a semiclassical
resonance between the phonon modes and the optically driven dynamics. We stress
on the importance of the stability of intermediate states for the truly
coherent control.Comment: 4 pages, 2 figures; final version; moderate changes, new titl
Spectrum of qubit oscillations from Bloch equations
We have developed a formalism suitable for calculation of the output spectrum
of a detector continuously measuring quantum coherent oscillations in a
solid-state qubit, starting from microscopic Bloch equations. The results
coincide with that obtained using Bayesian and master equation approaches. The
previous results are generalized to the cases of arbitrary detector response
and finite detector temperature.Comment: 8 page
- …