198 research outputs found

    Experimental realization of the one qubit Deutsch-Jozsa algorithm in a quantum dot

    Full text link
    We perform quantum interference experiments on a single self-assembled semiconductor quantum dot. The presence or absence of a single exciton in the dot provides a qubit that we control with femtosecond time resolution. We combine a set of quantum operations to realize the single-qubit Deutsch-Jozsa algorithm. The results show the feasibility of single qubit quantum logic in a semiconductor quantum dot using ultrafast optical control.Comment: REVTex4, 4 pages, 3 figures. Now includes more details about the dephasing in the quantum dots. The introduction has been reworded for clarity. Minor readability fixe

    Observation of the Kohn anomaly near the K point of bilayer graphene

    Full text link
    The dispersion of electrons and phonons near the K point of bilayer graphene was investigated in a resonant Raman study using different laser excitation energies in the near infrared and visible range. The electronic structure was analyzed within the tight-binding approximation, and the Slonczewski-Weiss-McClure (SWM) parameters were obtained from the analysis of the dispersive behavior of the Raman features. A softening of the phonon branches was observed near the K point, and results evidence the Kohn anomaly and the importance of considering electron-phonon and electron-electron interactions to correctly describe the phonon dispersion in graphene systems.Comment: 4 pages, 4 figure

    1D Exciton Spectroscopy of Semiconductor Nanorods

    Full text link
    We have theoretically shown that optical properties of semiconductor nanorods are controlled by 1D excitons. The theory, which takes into account anisotropy of spacial and dielectric confinement, describes size dependence of interband optical transitions, exciton binding energies. We have demonstrated that the fine structure of the ground exciton state explains the linear polarization of photoluminescence. Our results are in good agreement with the measurements in CdSe nanorods

    Decoherence and Relaxation of a Quantum Bit in the Presence of Rabi Oscillations

    Full text link
    Dissipative dynamics of a quantum bit driven by a strong resonant field and interacting with a heat bath is investigated. We derive generalized Bloch equations and find modifications of the qubit's damping rates caused by Rabi oscillations. Nonequilibrium decoherence of a phase qubit inductively coupled to a LC-circuit is considered as an illustration of the general results. It is argued that recent experimental results give a clear evidence of effective suppression of decoherence in a strongly driven flux qubit.Comment: 14 pages; misprints correcte

    On the inner Double-Resonance Raman scattering process in bilayer graphene

    Full text link
    The dispersion of phonons and the electronic structure of graphene systems can be obtained experimentally from the double-resonance (DR) Raman features by varying the excitation laser energy. In a previous resonance Raman investigation of graphene, the electronic structure was analyzed in the framework of the Slonczewski-Weiss-McClure (SWM) model, considering the outer DR process. In this work we analyze the data considering the inner DR process, and obtain SWM parameters that are in better agreement with those obtained from other experimental techniques. This result possibly shows that there is still a fundamental open question concerning the double resonance process in graphene systems.Comment: 5 pages, 3 figure

    Resonant nature of phonon-induced damping of Rabi oscillations in quantum dots

    Full text link
    Optically controlled coherent dynamics of charge (excitonic) degrees of freedom in a semiconductor quantum dot under the influence of lattice dynamics (phonons) is discussed theoretically. We show that the dynamics of the lattice response in the strongly non-linear regime is governed by a semiclassical resonance between the phonon modes and the optically driven dynamics. We stress on the importance of the stability of intermediate states for the truly coherent control.Comment: 4 pages, 2 figures; final version; moderate changes, new titl

    Spectrum of qubit oscillations from Bloch equations

    Full text link
    We have developed a formalism suitable for calculation of the output spectrum of a detector continuously measuring quantum coherent oscillations in a solid-state qubit, starting from microscopic Bloch equations. The results coincide with that obtained using Bayesian and master equation approaches. The previous results are generalized to the cases of arbitrary detector response and finite detector temperature.Comment: 8 page
    corecore