784 research outputs found
Highlights of 10th plasma chemistry meeting
The chemical structure is given of a film formed by plasma polymerization from pyridine monomers. The film has a hydrophilic chemical structure, its molecular weight is 900, and the molecular system is C55H50N10O3. The electrical characteristics of a plasma polymerized film are described. The film has good insulating properties and was successfully applied as video disc coating. Etching resistance properties make it possible to use the film as a resist in etching. The characteristics of plasma polymer formed from monomers containing tetramethyltin are discussed. The polymer is in film form, displays good adhesiveness, is similar to UV film UV 35 in light absorption and is highly insulating
A Phase-Space Approach to Collisionless Stellar Systems Using a Particle Method
A particle method for reproducing the phase space of collisionless stellar
systems is described. The key idea originates in Liouville's theorem which
states that the distribution function (DF) at time t can be derived from
tracing necessary orbits back to t=0. To make this procedure feasible, a
self-consistent field (SCF) method for solving Poisson's equation is adopted to
compute the orbits of arbitrary stars. As an example, for the violent
relaxation of a uniform-density sphere, the phase-space evolution which the
current method generates is compared to that obtained with a phase-space method
for integrating the collisionless Boltzmann equation, on the assumption of
spherical symmetry. Then, excellent agreement is found between the two methods
if an optimal basis set for the SCF technique is chosen. Since this
reproduction method requires only the functional form of initial DFs but needs
no assumptions about symmetry of the system, the success in reproducing the
phase-space evolution implies that there would be no need of directly solving
the collisionless Boltzmann equation in order to access phase space even for
systems without any special symmetries. The effects of basis sets used in SCF
simulations on the reproduced phase space are also discussed.Comment: 16 pages w/4 embedded PS figures. Uses aaspp4.sty (AASLaTeX v4.0). To
be published in ApJ, Oct. 1, 1997. This preprint is also available at
http://www.sue.shiga-u.ac.jp/WWW/prof/hozumi/papers.htm
Direct visualization of a significant stenosis of the right coronary artery by transthoracic echocardiography. A case report
Non-invasive imaging of coronary arteries by transthoracic echocardiography is an emerging diagnostic tool to study the left main (LM), left descending artery (LAD), circumflex (Cx) and right coronary artery (RCA). Impaired coronary circulation can be assessed by measuring coronary velocity flow reserve (CVFR) by transthoracic Doppler echocardiography. Coronary artery stenoses can be identified as localized colour aliasing and accelerated flow velocities. We report a case with an acute coronary syndrome (ACS) of a 46-year-old man. With non-invasive imaging of coronary arteries by transthoracic echocardiography (TTE), we identified a segment of the mid right coronary artery (RCA) suggestive of stenosis with localized colour aliasing and accelerated flow velocity. We found a high ratio between the stenotic peak velocity and the prestenotic peak velocity, and a pathologic coronary flow velocity reserve (CFVR) distal to the stenosis in the posterior interventricular descending branch (RDP). Subsequent coronary angiography demonstrated one vessel disease with a stenosis in segment 3 of RCA, which was successfully treated with percutaneos coronary intervention PCI. Two weeks following the PCI procedure he was readmitted to hospital with chest pain. A subacute stent thrombosis was questioned, and repeated echocardiography was preformed. The mid portion of RCA showed normal and laminar flow. The CVFR of RCA measured in the RDP showed normal vasodilatory response, confirming an open RCA without any flow limitation. A repeated coronary angiogram demonstrated only a mild in stent intimal hyperplasia. This case illustrates the value of transthoracic echocardiography as a tool both in the diagnosis and the follow-up of chest pain disorders and coronary flow problems. Transthoracic echocardiography allows both direct visualization of the various coronary segments and assessment of the CVFR
Evolution of Massive Blackhole Triples I -- Equal-mass binary-single systems
We present the result of -body simulations of dynamical evolution of
triple massive blackhole (BH) systems in galactic nuclei. We found that in most
cases two of the three BHs merge through gravitational wave (GW) radiation in
the timescale much shorter than the Hubble time, before ejecting one BH through
a slingshot. In order for a binary BH to merge before ejecting out the third
one, it has to become highly eccentric since the gravitational wave timescale
would be much longer than the Hubble time unless the eccentricity is very high.
We found that two mechanisms drive the increase of the eccentricity of the
binary. One is the strong binary-single BH interaction resulting in the
thermalization of the eccentricity. The second is the Kozai mechanism which
drives the cyclic change of the inclination and eccentricity of the inner
binary of a stable hierarchical triple system. Our result implies that many of
supermassive blackholes are binaries.Comment: 20 pages, 12 figure
The Self-Regulated Growth of Supermassive Black Holes
We present a series of simulations of the self--regulated growth of
supermassive black holes (SMBHs) in galaxies via three different fueling
mechanisms: major mergers, minor mergers, and disk instabilities. The SMBHs in
all three scenarios follow the same black hole fundamental plane (BHFP) and
correlation with bulge binding energy seen in simulations of major mergers, and
observed locally. Furthermore, provided that the total gas supply is
significantly larger than the mass of the SMBH, its limiting mass is not
influenced by the amount of gas available or the efficiency of black hole
growth. This supports the assertion that SMBHs accrete until they reach a
critical mass at which feedback is sufficient to unbind the gas locally,
terminating the inflow and stalling further growth. At the same time, while
minor and major mergers follow the same projected correlations (e.g., the
and Magorrian relations), SMBHs grown via disk instabilities do
not, owing to structural differences between the host bulges. This finding is
supported by recent observations of SMBHs in pseudobulges and bulges in barred
systems, as compared to those hosted by classical bulges. Taken together, this
provides support for the BHFP and binding energy correlations as being more
"fundamental" than other proposed correlations in that they reflect the
physical mechanism driving the co-evolution of SMBHs and spheroids.Comment: 15 pages, 16 figures, accepted for publication in Ap
Radial stability of a family of anisotropic Hernquist models with and without a supermassive black hole
We present a method to investigate the radial stability of a spherical
anisotropic system that hosts a central supermassive black hole (SBH). Such
systems have never been tested before for stability, although high anisotropies
have been considered in the dynamical models that were used to estimate the
masses of the central putative supermassive black holes. A family of analytical
anisotropic spherical Hernquist models with and without a black hole were
investigated by means of N-body simulations. A clear trend emerges that the
supermassive black hole has a significant effect on the overall stability of
the system, i.e. an SBH with a mass of a few percent of the total mass of the
galaxy can prevent or reduce the bar instabilities in anisotropic systems. Its
mass not only determines the strength of the instability reduction, but also
the time in which this occurs. These effects are most significant for models
with strong radial anisotropies. Furthermore, our analysis shows that unstable
systems with similar SBH but with different anisotropy radii evolve
differently: highly radial systems become oblate, while more isotropic models
tend to form into prolate structures. In addition to this study, we also
present a Monte-Carlo algorithm to generate particles in spherical anisotropic
systems.Comment: 16 pages, 12 figures, accepted for publication in MNRAS (some figures
have a lowered resolution
Variation of Bar Strength with Central Velocity Dispersion in Spiral Galaxies
We investigate the variation of bar strength with central velocity dispersion
in a sample of barred spiral galaxies. The bar strength is characterized by
, the maximal tangential perturbation associated with the bar, normalized
by the mean axisymmetric force. It is derived from the galaxy potentials which
are obtained using near-infrared images of the galaxies. However, is
sensitive to bulge mass. Hence we also estimated bar strengths from the
relative Fourier intensity amplitude () of bars in near-infrared images.
The central velocity dispersions were obtained from integral field spectroscopy
observations of the velocity fields in the centers of these galaxies; it was
normalized by the rotation curve amplitude obtained from HI line width for each
galaxy. We found a correlation between bar strengths (both and )
and the normalized central velocity dispersions in our sample. This suggests
that bars weaken as their central components become kinematically hotter. This
may have important implications for the secular evolution of barred galaxies.Comment: To appear in Ap&S
The Insulation of HVDC Extruded Cable System Joints. Part 1: Review of Materials, Design and Testing Procedures
This position paper by the DEIS HVDC Cable Systems Technical Committee provides a review of existing diagnostic electrical and dielectric techniques for testing the insulation of polymeric extruded HVDC cable joints in the present Part 1. Here, the state of the art on the insulation of HVDC extruded cable system joints is covered with reference to types, design and testing techniques. This helps to identify routine tests as the first target for the onset of new testing procedures, AC-PD measurements as the readily-available measurement from manufacturers' practices for quality control of the insulation of accessories during routine tests and VHF/UHF wireless sensors as the best tool for performing such measurements on joints in the noisy factory environment. Thereby, a novel protocol for the measurement of partial discharges using AC voltages and VHF/UHF sensors, for quality control during routine tests on such joints, is derived in the next Part 2. This protocol is the main novelty of this investigation
Recommended from our members
The Insulation of HVDC Extruded Cable System Joints. Part 2: Proposal of a New AC Voltage PD Measurement Protocol for Quality Control during Routine Tests
The review of materials, design and testing of joints for HVDC extruded cable systems provided in previous Part 1 paved the way to this Part 2 position paper by the DEIS HVDC Cable Systems Technical Committee, whose aim is to remedy the scarcity of existing standardized tests on joints. After a sound analysis, here routine tests are identified as the first practical target for the onset of new testing procedures, AC-PD measurements as the readily-available measurement from manufacturers’ experience for quality control of joints during routine tests and VHF/UHF wireless sensors as the best tool for such measurements in the noisy environment of factories. Thereby, a novel protocol for PD measurement using AC voltages and VHF/UHF electromagnetic sensors, for quality control during routine tests on HVDC extruded joints, is proposed
Initial report on polar mesospheric cloud observations by Himawari-8
We provide an initial report on polar mesospheric cloud (PMC) observations by
the Japanese Geostationary Earth Orbit (GEO) meteorological satellite
Himawari-8. Heights of the observed PMCs were estimated to be 80–82 km.
Observed PMCs were active only during summertime in both the northern and
southern polar regions. These observations are consistent with known PMC
behavior. From its almost fixed location relative to the Earth, Himawari-8 is
capable of continuously monitoring PMC every 10 min with three visible bands:
blue (0.47 µm), green (0.51 µm), and red (0.64 µm). Thus, Himawari-8
can contribute to PMC research in the near future.</p
- …