4,011 research outputs found

    Structure of Light Unstable Nuclei Studied with Antisymmetrized Molecular Dynamics

    Get PDF
    Structures of light unstable nuclei, Li, Be, B, and C isotopes are systematically studied with a microscopic method of antisymmetrized molecular dynamics. The theoretical method is found to be very useful to study ground and excited states of various nuclei covering unstable nuclei. The calculations succeed to reproduce many experimental data for nuclear structures; energies, radii, magnetic dipole moments, electric quadrupole moments, transition strength. In the theoretical results it is found that various exotic phenomena in unstable nuclei such as molecular-like structures, neutron skin, and large deformations may appear in unstabel nuclei. We investigate the structure change with the increase of neutron number and with the increase of the excitation energies, and find the drastic changes between shell-model-like structures and clustering structures. The mechanism of clustering developments in unstable nuclei are discussed.Comment: 73 pages, Revtex, 42 postscript figures (using epsf.sty). to be published in Suppl. Prog. Theor. Phy

    Mariner Mars 1969 SCAN control subsystem design and analysis

    Get PDF
    Design and analysis of self correcting automatic navigation system for Mariner Mars spacecraf

    New Treatment of Resonances with Bound State Approximation by Using Pseudo Potential

    Full text link
    We propose a new approach to extract the wave functions of resonances by the bound state approximation which gives the mixed states of the resonance components and the continuum ones. In our approach, on the basis of the method of analytic continuation in the coupling constant (ACCC), we construct Pad\'e rational function by adopting the positive energies as well as the negative ones. We report the result of the application of this new method to the second 2+2^+ state of 12^{12}C which was studied with the ACCC method in our previous work. It is found that the resonance parameters obtained by the ACCC method are well reproduced by the new method. Some advantages over the ACCC method are also shown.Comment: 10pages, 2figures, submitted to Prog. Theor. Phys, changed content, added reference

    Clustering and Triaxial Deformations of 40^{40}Ca

    Full text link
    We have studied the positive-parity states of 40^{40}Ca using antisymmetrized molecular dynamics (AMD) and the generator coordinate method (GCM). Imposing two different kinds of constraints on the variational calculation, we have found various kinds of 40Ca^{40}{\rm Ca} structures such as a deformed-shell structure, as well as α\alpha-36^{36}Ar and 12^{12}C-28^{28}Si cluster structures. After the GCM calculation, we obtained a normal-deformed band and a superdeformed band together with their side bands associated with triaxial deformation. The calculated B(E2)B(E2) values agreed well with empirical data. It was also found that the normal-deformed and superdeformed bands have a non-negligible α\alpha-36^{36}Ar cluster component and 12^{12}C-28^{28}Si cluster component, respectively. This leads to the presence of an α\alpha-36^{36}Ar higher-nodal band occurring above the normal-deformed band.Comment: 11pages, 9 figure

    Electronic integrator for gyro rate output voltages

    Get PDF
    Circuit which integrates spacecraft gyro output voltages to provide analog position signals has been developed. Accurate integration is provided by all solid state system which uses no choppers and takes advantage of commercially available flight qualified components

    Structures and Transitions in Light Unstable Nuclei

    Get PDF
    We study the structures of the unstable Be isotopes with the theoretical method of antisymmetrized molecular dynamics. It is found that various structures of the excited states appear in the low-energy region of neutron-rich Be nuclei. Focusing on the 2α\alpha clustering, we analyze the intrinsic structures with the help of the experimental data of Gamow-Teller transitions.Comment: 8 pages and 4 figure

    Evidence for <i>L</i>-dependence generated by channel coupling: <sup>16</sup>O scattering from <sup>12</sup>C at 115.9 MeV

    Get PDF
    Background: In earlier work, inversion of S matrix for 330 MeV 16O on 12C resulted in highly undulatory potentials; the S matrix resulted from the inclusion of strong coupling to states of projectile and target nuclei. L-independent S-matrix equivalent potentials for other explicitly L-dependent potentials have been found to be undulatory. Purpose: To investigate the possible implications of the undulatory dynamic polarization potential for an underlying L dependence of the 16O on 12C optical potential. Methods: S matrix to potential, SL → V (r), inversion which yields local potentials that reproduce the elastic channel S matrix of coupled channel (CC) calculations, will be applied to the S matrix for 115.9 MeV 16O on 12C. Further, SL for explicitly L-dependent potentials are inverted and the resulting L-independent potentials are characterized and compared with the undulatory potentials found for 16O on 12C. Results: Some of the undulatory features exhibited by the potentials modified by channel coupling for 115.9 MeV 16O on 12C can be simulated by simple parameterized L-dependent potentials. Conclusions: The elastic scattering of 16O by 12C is a particularly favorable case for revealing the effective L dependence of the potential modified by channel coupling. Nevertheless, there is no reason to suppose that undularity is not a generic property leading in many cases to the choice: nucleus-nucleus potentials are (i) smooth and L-dependent, (ii) L-independent and undulatory, or (iii) both

    Analysis of previous microscopic calculations for second 0+0^+ state in 12^{12}C in terms of 3-alpha particle Bose-condensed state

    Full text link
    The wave function of the second 0+0^+ state of 12^{12}C which was obtained long time ago by solving the microscopic 3α\alpha problem is shown to be almost completely equivalent to the wave function of the 3α\alpha condensed state which has been proposed recently by the present authors. This equivalence of the wave functions is shown to hold in two cases where different effective two-nucleon forces are adopted. This finding gives strong support for interpreting the second 0+0^+ state of 12^{12}C which is the key state for the synthesis of 12^{12}C in stars ('Hoyle' state), and which is one of the typical mysterious 0+0^+ states in light nuclei, as a gas-like structure of three α\alpha particles, Bose-condensed into an identical s-wave function.Comment: revtex, 5 pages, 2 figures, submitted to Phys. Rev.
    corecore