265 research outputs found
The Chiral Model of Sakai-Sugimoto at Finite Baryon Density
In the context of holographic QCD we analyze Sakai-Sugimoto's chiral model at
finite baryon density and zero temperature. The baryon number density is
introduced through compact D4 wrapping S^4 at the tip of D8-\bar{D8}. Each
baryon acts as a chiral point-like source distributed uniformly over R^3, and
leads a non-vanishing U(1)_V potential on the brane. For fixed baryon charge
density n_B we analyze the bulk energy density and pressure using the canonical
formalism. The baryonic matter with point like sources is always in the
spontaneously broken phase of chiral symmetry, whatever the density. The
point-like nature of the sources and large N_c cause the matter to be repulsive
as all baryon interactions are omega mediated. Through the induced DBI action
on D8-\bar{D8}, we study the effects of the fixed baryon charge density n_B on
the pion and vector meson masses and couplings. Issues related to vector
dominance in matter in the context of holographic QCD are also discussed.Comment: V3: 39 pages, 16 figures, minor corrections, version to appear in
JHEP. V2: references added, typos correcte
Shear viscosity, instability and the upper bound of the Gauss-Bonnet coupling constant
We compute the dimensionality dependence of for charged black branes
with Gauss-Bonnet correction. We find that both causality and stability
constrain the value of Gauss-Bonnet coupling constant to be bounded by 1/4 in
the infinite dimensionality limit. We further show that higher dimensionality
stabilize the gravitational perturbation. The stabilization of the perturbation
in higher dimensional space-time is a straightforward consequence of the
Gauss-Bonnet coupling constant bound.Comment: 16 pages,3 figures+3 tables,typos corrected, published versio
Stringy NJL and Gross-Neveu models at finite density and temperature
Nonlocal stringy versions of the Nambu-Jona-Lasinio and Gross-Neveu models
arise in a certain limit of holographic QCD. We analyze the phase structure at
finite density and temperature at strong coupling in terms of probe branes in
the gravity dual. Comparison with the phase structure of the local field theory
models shows qualitative agreement with some aspects, and disagreement with
others. Finally, we explain how to construct the Landau potentials for these
models by taking the probe branes off-shell.Comment: 32 pages, uses JHEP3.cls; v2, references added, version to be
submitted to JHE
A Dual Geometry of the Hadron in Dense Matter
We identify the dual geometry of the hadron phase of dense nuclear matter and
investigate the confinement/deconfinement phase transition. We suggest that the
low temperature phase of the RN black hole with the full backreaction of the
bulk gauge field is described by the zero mass limit of the RN black hole with
hard wall. We calculated the density dependence of critical temperature and
found that the phase diagram closes. We also study the density dependence of
the rho meson mass.Comment: 16 pages, 4 figures, typos corrected, references adde
Cold Nuclear Matter In Holographic QCD
We study the Sakai-Sugimoto model of holographic QCD at zero temperature and
finite chemical potential. We find that as the baryon chemical potential is
increased above a critical value, there is a phase transition to a nuclear
matter phase characterized by a condensate of instantons on the probe D-branes
in the string theory dual. As a result of electrostatic interactions between
the instantons, this condensate expands towards the UV when the chemical
potential is increased, giving a holographic version of the expansion of the
Fermi surface. We argue based on properties of instantons that the nuclear
matter phase is necessarily inhomogeneous to arbitrarily high density. This
suggests an explanation of the "chiral density wave" instability of the quark
Fermi surface in large N_c QCD at asymptotically large chemical potential. We
study properties of the nuclear matter phase as a function of chemical
potential beyond the transition and argue in particular that the model can be
used to make a semi-quantitative prediction of the binding energy per nucleon
for nuclear matter in ordinary QCD.Comment: 31 pages, LaTeX, 1 figure, v2: some formulae corrected, qualitative
results unchange
Bulk Filling Branes and the Baryon Density in AdS/QCD with gravity back-reaction
We consider the gravity back reaction on the metric due to the baryon density
in effective ads/qcd model by reconsidering the role of the charged AdS black
hole. Previously it has been known that the U(1) charge is dual to the
R-charge. Here we point out that if we consider the case where is
completely filled with flavor branes, the gravity back reaction produces
charged AdS black hole where the effect of charge on the metric is proportional
to . As a consequence, phase diagram changes qualitatively if we allow
finite: it closes at the finite density unlike the probe brane
embedding approach.
Another issue we discuss here is the question whether there is any chemical
potential dependence in the confining phase. We consider this problem in the
hard wall model with baryon charge. We conclude that there is a non-trivial
dependence on the chemical potential in this case also.Comment: 17 pages 3x2 figures, v2: references added;v3 published version,
title change and reference adde
Holographic Nuclear Physics
We analyze the phases of the Sakai-Sugimoto model at finite temperature and
baryon chemical potential. Baryonic matter is represented either by 4-branes in
the 8-branes or by strings stretched from the 8-branes to the horizon. We find
the explicit configurations and use them to determine the phase diagram and
equation of state of the model. The 4-brane configuration (nuclear matter) is
always preferred to the string configuration (quark matter), and the latter is
also unstable to density fluctuations. In the deconfined phase the phase
diagram has three regions corresponding to the vacuum, quark-gluon plasma, and
nuclear matter, with a first-order and a second-order phase transition
separating the phases. We find that for a large baryon number density, and at
low temperatures, the dominant phase has broken chiral symmetry. This is in
qualitative agreement with studies of QCD at high density.Comment: 27 pages, 26 figures. v2: Added a comment about higher derivative
corrections to the DBI action in the smeared instanton in section 2.1. v3:
References added, version published in JHEP. v4: misprints correcte
Anomalies and the chiral magnetic effect in the Sakai-Sugimoto model
In the chiral magnetic effect an imbalance in the number of left- and
right-handed quarks gives rise to an electromagnetic current parallel to the
magnetic field produced in noncentral heavy-ion collisions. The chiral
imbalance may be induced by topologically nontrivial gluon configurations via
the QCD axial anomaly, while the resulting electromagnetic current itself is a
consequence of the QED anomaly. In the Sakai-Sugimoto model, which in a certain
limit is dual to large-N_c QCD, we discuss the proper implementation of the QED
axial anomaly, the (ambiguous) definition of chiral currents, and the
calculation of the chiral magnetic effect. We show that this model correctly
contains the so-called consistent anomaly, but requires the introduction of a
(holographic) finite counterterm to yield the correct covariant anomaly.
Introducing net chirality through an axial chemical potential, we find a
nonvanishing vector current only before including this counterterm. This seems
to imply the absence of the chiral magnetic effect in this model. On the other
hand, for a conventional quark chemical potential and large magnetic field,
which is of interest in the physics of compact stars, we obtain a nontrivial
result for the axial current that is in agreement with previous calculations
and known exact results for QCD.Comment: 35 pages, 4 figures, v2: added comments about frequency-dependent
conductivity at the end of section 4; references added; version to appear in
JHE
Criticality, Scaling and Chiral Symmetry Breaking in External Magnetic Field
We consider a D7-brane probe of in the presence of pure
gauge -field. The dual gauge theory is flavored Yang-Mills theory in
external magnetic field. We explore the dependence of the fermionic condensate
on the bare quark mass and study the discrete self-similar behavior of
the theory near the origin of the parametric space. We calculate the critical
exponents of the bare quark mass and the fermionic condensate. A study of the
meson spectrum supports the expectation based on thermodynamic considerations
that at zero bare quark mass the stable phase of the theory is a chiral
symmetry breaking one. Our study reveals the self-similar structure of the
spectrum near the critical phase of the theory, characterized by zero fermionic
condensate and we calculate the corresponding critical exponent of the meson
spectrum.Comment: 29 pages, 9 figures. Accepted in JHEP. Updated to mach the published
version. One figure added, some definitions improve
- …