1,265 research outputs found

    The kinematics of the swing phase obtained from accelerometer and gyroscope measurements

    Get PDF
    The kinematics needed to calculate the knee moment during the initial swing phase were obtained from a set of eight leg-mounted uni-axial accelerometers and two gyroscopes. The angular and linear accelerations of shank and thigh were calculated from the signals of two accelerometers mounted on each of the leg segments directed tangentially and radially to the movement. The angular velocities of shank and thigh were measured by the gyroscopes. The absolute angles of shank and thigh were obtained by integration of the gyroscope signal plus an added offset angle, estimated from radial and tangential accelerometer signals registered while standing. Movement was assumed to be in the saggital plane. The accuracy of the quantities found from the leg mounted sensors was calculated in terms of correlation and the RMS error by comparing against measurements obtained by a VICONTM system. The results were indistinguishable. The system was later applied in research measurement

    Three-Dimensionally Confined Optical Modes in Quantum Well Microtube Ring Resonators

    Full text link
    We report on microtube ring resonators with quantum wells embedded as an optically active material. Optical modes are observed over a broad energy range. Their properties strongly depend on the exact geometry of the microtube along its axis. In particular we observe (i) preferential emission of light on the inside edge of the microtube and (ii) confinement of light also in direction of the tube axis by an axially varying geometry which is explained in an expanded waveguide model.Comment: 5 pages, 4 figure

    A bacteriorhodopsin analog reconstituted with a nonisomerizable 13-trans retinal derivative displays light insensitivity

    Get PDF
    With the aim of preparing a light-insensitive bacteriorhodopsin-like pigment, bacterio-opsin expressed in Escherichia coli was treated in phospholipid-detergent micelles with the retinal analog II, in which the C13-C14 trans-double bond cannot isomerize due to inclusion in a cyclopentene ring. The formation of a complex with a fine structure (λmax, 439 nm) was first observed. This partially converted over a period of 12 days to a bacteriorhodopsin-like chromophore (ebR-II) with λmax, 555 nm. An identical behavior has been observed previously upon reconstitution of bleached purple membrane with the analog II. Purification by gel filtration gave pure ebR-II with λmax, 558 nm, similar to that of light-adapted bacterio-opsin reconstituted with all-trans retinal (ebR-I). Spectrophotometric titration of ebR-II as a function of pH showed that the purple to blue transition of bacteriorhodopsin at acidic pH was altered, and the apparent pKa of Schiff base deprotonation at alkaline pH was lowered by 2.4 units, relative to that of ebR-I. ebR-II showed no light-dark adaptation, no proton pumping, and no intermediates characteristic of the bacteriorhodopsin photocycle. In addition, the rates of reaction with hydroxylamine in the dark and in the light were similar. These results show, as expected, that isomerization of the C13-C14 double bond is required for bacteriorhodopsin function and that prevention of this isomerization confers light insensitivity

    8x14Gb/s ring WDM modulator array with integrated tungsten heaters and Ge monitor photodetectors

    Get PDF
    An 8x14Gb/s wavelength-division multiplexed Si ring modulator array is presented with uniform channel performance. Tungsten heaters and Ge monitor photodetectors at the ring modulator drop ports are co-integrated to track and control the modulation quality

    Guided Neuronal Growth on Arrays of Biofunctionalized GaAs/InGaAs Semiconductor Microtubes

    Get PDF
    We demonstrate embedded growth of cortical mouse neurons in dense arrays of semiconductor microtubes. The microtubes, fabricated from a strained GaAs/InGaAs heterostructure, guide axon growth through them and enable electrical and optical probing of propagating action potentials. The coaxial nature of the microtubes -- similar to myelin -- is expected to enhance the signal transduction along the axon. We present a technique of suppressing arsenic toxicity and prove the success of this technique by overgrowing neuronal mouse cells.Comment: 3 pages, 4 figure

    Idiopathic internal mammary artery aneurysm

    Get PDF

    CHRONO: a parallel multi-physics library for rigid-body, flexible-body, and fluid dynamics

    Get PDF
    Abstract. The last decade witnessed a manifest shift in the microprocessor industry towards chip designs that promote parallel computing. Until recently the privilege of a select group of large research centers, Teraflop computing is becoming a commodity owing to inexpensive GPU cards and multi to many-core x86 processors. This paradigm shift towards large scale parallel computing has been leveraged in CHRONO, a freely available C++ multi-physics simulation package. CHRONO is made up of a collection of loosely coupled components that facilitate different aspects of multi-physics modeling, simulation, and visualization. This contribution provides an overview of CHRONO::Engine, CHRONO::Flex, CHRONO::Fluid, and CHRONO::Render, which are modules that can capitalize on the processing power of hundreds of parallel processors. Problems that can be tackled in CHRONO include but are not limited to granular material dynamics, tangled large flexible structures with self contact, particulate flows, and tracked vehicle mobility. The paper presents an overview of each of these modules and illustrates through several examples the potential of this multi-physics library

    A compact integrated 40Gb/s packet demultiplexer and label extractor on silicon-on-insulator for an optical packet switch

    Get PDF
    We demonstrate a compact 40Gb/s 32-channel packet demultiplexer and in-band label extractor based on photonic integrated AWG followed by a narrow-band microring resonator at each AWG output. Error free operation with =0.5dB penalty was measure

    Clinical field-strength MRI of amyloid plaques induced by low-level cholesterol feeding in rabbits

    Get PDF
    Two significant barriers have limited the development of effective treatment of Alzheimer's disease. First, for many cases the aetiology is unknown and likely multi-factorial. Among these factors, hypercholesterolemia is a known risk predictor and has been linked to the formation of β-amyloid plaques, a pathological hallmark this disease. Second, standardized diagnostic tools are unable to definitively diagnose this disease prior to death; hence new diagnostic tools are urgently needed. Magnetic resonance imaging (MRI) using high field-strength scanners has shown promise for direct visualization of β-amyloid plaques, allowing in vivo longitudinal tracking of disease progression in mouse models. Here, we present a new rabbit model for studying the relationship between cholesterol and Alzheimer's disease development and new tools for direct visualization of β-amyloid plaques using clinical field-strength MRI. New Zealand white rabbits were fed either a low-level (0.125–0.25% w/w) cholesterol diet (n = 5) or normal chow (n = 4) for 27 months. High-resolution (66 × 66 × 100 µm3; scan time = 96 min) ex vivo MRI of brains was performed using a 3-Tesla (T) MR scanner interfaced with customized gradient and radiofrequency coils. β-Amyloid-42 immunostaining and Prussian blue iron staining were performed on brain sections and MR and histological images were manually registered. MRI revealed distinct signal voids throughout the brains of cholesterol-fed rabbits, whereas minimal voids were seen in control rabbit brains. These voids corresponded directly to small clusters of extracellular β-amyloid-positive plaques, which were consistently identified as iron-loaded (the presumed source of MR contrast). Plaques were typically located in the hippocampus, parahippocampal gyrus, striatum, hypothalamus and thalamus. Quantitative analysis of the number of histologically positive β-amyloid plaques (P < 0.0001) and MR-positive signal voids (P < 0.05) found in cholesterol-fed and control rabbit brains corroborated our qualitative observations. In conclusion, long-term, low-level cholesterol feeding was sufficient to promote the formation of extracellular β-amyloid plaque formation in rabbits, supporting the integral role of cholesterol in the aetiology of Alzheimer's disease. We also present the first evidence that MRI is capable of detecting iron-associated β-amyloid plaques in a rabbit model of Alzheimer's disease and have advanced the sensitivity of MRI for plaque detection to a new level, allowing clinical field-strength scanners to be employed. We believe extension of these technologies to an in vivo setting in rabbits is feasible and that our results support future work exploring the role of MRI as a leading imaging tool for this debilitating and life-threatening disease
    corecore