8 research outputs found

    Antibacterial Films of Alginate-CoNi-Coated Cellulose Paper Stabilized Co NPs for Dyes and Nitrophenol Degradation

    No full text
    The development of a solid substrate for the support and stabilization of zero-valent metal nanoparticles (NPs) is the heart of the catalyst system. In the current embodiment, we have prepared solid support comprise of alginate-coated cellulose filter paper (Alg/FP) for the synthesis and stabilization of Co nanoparticles (NPs) named as Alg/FP@Co NPs. Furthermore, Alginate polymer was blended with 1 and 2 weight percent of CoNi NPs to make Alg-CoNi1/FP and Alg-CoNi2/FP, respectively. All these stabilizing matrixes were used as dip-catalyst for the degradation of azo dyes and reduction of 4-nitrophenol (4NP). The effect of initial dye concentration, amount of NaBH4, and catalyst dosage was assessed for the degradation of Congo red (CR) dye by using Alg-CoNi2/FP@Co NPs. Results indicated that the highest kapp value (3.63 × 10−1 min−1) was exhibited by Alg-CoNi2/FP@Co NPs and lowest by Alg/FP@Co NPs against the discoloration of CR dye. Furthermore, it was concluded that Alg-CoNi2/FP@Co NPs exhibited strong catalyst activity against CR, and methyl orange dye (MO) degradation as well as 4NP reduction. Antibacterial activity of the prepared composites was also investigated and the highest l activity was shown by Alg-CoNi2/FP@Co NPs, which inhibit 2.5 cm zone of bacteria compared to other catalysts

    An alternative approach for evaluating the phenotypic virulence factors of pathogenic Escherichia coli

    No full text
    Escherichia coli is a recognized zoonotic food-borne pathogen; however, the use of polymerase chain reaction (PCR) in the underdeveloped countries to differentiate pathogenic from non-pathogenic E. coli is a problematic issue. Our grail was to assess the phenotypic virulence markers motility, hemolysin, congo red agar, embryo lethality assay and serum resistance for pathogenic E. coli (PEC) correlated to PCR tests which is currently used world-wide to evaluate the PEC. The 448 strains of Escherichia coli that were isolated from different sources, were characterized for phenotypic virulence factors such as motility, hemolysin, Congo red binding, Embryo Lethality assay (ELA) and serum resistance, as well as antibiotic susceptibility using disc diffusion method to 23 antibiotics. Results exhibited 100% motility and Congo red binding, 97.1% for hemolysin production and 90.2% in the ELA. As a result, we were able to hypothetically conclude that the aforementioned virulence markers are plain, straightforward, economical, rapid, more dynamic, uncomplicated methodology, duplicatable and cost next to nothing when compared to the molecular PCR. Their implementation in a diagnostic microbiology laboratory for vetting is a rewarding task in the underdeveloped countries. It augments endeavors to minimize the use of PCR in our investigations especially during epidemiological and outbreak investigations of PEC
    corecore