308 research outputs found
Training community care workers to provide comprehensive TBâHIVâPMTCT integrated care in KwaZulu-Natal: Lessons learnt
To describe a participatory approach to implement and evaluate ways to integrate and traincommunity care workers (CCWs) to enhance collaborative TBâHIVâPMTCT activities, and home-basedHIV counseling and testing (HCT) at community level. The intervention study was conducted in Sisonke, a rural district of KwaZulu Natal, SouthAfrica. A baseline household (HH) survey was conducted in 11 villages. Six villages were randomlyselected into intervention and control clusters. Training was provided first to CCWs from the inter-vention cluster (IC) followed by the control cluster (CC). Routine monthly data from CCWs werecollected from MarchâDecember 2010. The data was subjected to bivariate tests
A Large-Scale SUMO-Based Emulation Platform
A hardware-in-the-loop simulation platform for emulating large-scale intelligent transportation systems is presented. The platform embeds a real vehicle into SUMO, a microscopic road traffic simulation package. Emulations, consisting of the real vehicle, and potentially thousands of simulated vehicles, are run in real time. The platform provides an opportunity for real drivers to gain a feel of being in a large-scale, connected vehicle scenario. Various applications of the platform are presented
GEMS: The Size Evolution of Disk Galaxies
We combine HST imaging from the GEMS survey with photometric redshifts from
COMBO-17 to explore the evolution of disk-dominated galaxies since z<1.1. The
sample is comprised of all GEMS galaxies with Sersic indices n<2.5, derived
from fits to the galaxy images. We account fully for selection effects through
careful analysis of image simulations; we are limited by the depth of the
redshift and HST data to the study of galaxies with absolute magnitudes
M(V)10. We find strong evolution in
the magnitude-size scaling relation for galaxies with M(V)<-20, corresponding
to a brightening of 1 mag per sqarcsec in rest-frame V-band by z=1. Yet, disks
at a given absolute magnitude are bluer and have lower stellar mass-to-light
ratios at z=1 than at the present day. As a result, our findings indicate weak
or no evolution in the relation between stellar mass and effective disk size
for galaxies with log(M)>10 over the same time interval. This is strongly
inconsistent with the most naive theoretical expectation, in which disk size
scales in proportion to the halo virial radius, which would predict that disks
are a factor of two denser at fixed mass at z=1. The lack of evolution in the
stellar mass-size relation is consistent with an ``inside-out'' growth of
galaxy disks on average (galaxies increasing in size as they grow more
massive), although we cannot rule out more complex evolutionary scenarios.Comment: 22 pages, 16 figures, submitted to Ap
Cytochrome oxidase subunit VI of Trypanosoma brucei is imported without a cleaved presequence and is developmentally regulated at both RNA and protein levels
Mitochondrial respiration in the African trypanosome undergoes dramatic developmental stage regulation. This requires co-ordinated control of components encoded by both the nuclear genome and the kinetoplast, the unusual mitochondrial genome of these parasites. As a model for understanding the co-ordination of these genomes, we have examined the regulation and mitochondrial import of a nuclear-encoded component of the cytochrome oxidase complex, cytochrome oxidase subunit VI (COXVI). By generating transgenic trypanosomes expressing intact or mutant forms of this protein, we demonstrate that COXVI is not imported using a conventional cleaved presequence and show that sequences at the N-terminus of the protein are necessary for correct mitochondrial sorting. Analyses of endogenous and transgenic COXVI mRNA and protein expression in parasites undergoing developmental stage differentiation demonstrates a temporal order of control involving regulation in the abundance of, first, mRNA and then protein. This represents the first dissection of the regulation and import of a nuclear-encoded protein into the cytochrome oxidase complex in these organisms, which were among the earliest eukaryotes to possess a mitochondrion
An Explanation for the Observed Weak Size Evolution of Disk Galaxies
Surveys of distant galaxies with the Hubble Space Telescope and from the
ground have shown that there is only mild evolution in the relationship between
radial size and stellar mass for galactic disks from z~1 to the present day.
Using a sample of nearby disk-dominated galaxies from the Sloan Digital Sky
Survey (SDSS), and high redshift data from the GEMS (Galaxy Evolution from
Morphology and SEDs) survey, we investigate whether this result is consistent
with theoretical expectations within the hierarchical paradigm of structure
formation. The relationship between virial radius and mass for dark matter
halos in the LCDM model evolves by about a factor of two over this interval.
However, N-body simulations have shown that halos of a given mass have less
centrally concentrated mass profiles at high redshift. When we compute the
expected disk size-stellar mass distribution, accounting for this evolution in
the internal structure of dark matter halos and the adiabatic contraction of
the dark matter by the self-gravity of the collapsing baryons, we find that the
predicted evolution in the mean size at fixed stellar mass since z~1 is about
15-20 percent, in good agreement with the observational constraints from GEMS.
At redshift z~2, the model predicts that disks at fixed stellar mass were on
average only 60% as large as they are today. Similarly, we predict that the
rotation velocity at a given stellar mass (essentially the zero-point of the
Tully-Fisher relation) is only about 10 percent larger at z~1 (20 percent at
z~2) than at the present day.Comment: 13 pages, 6 figures, accepted for publication in ApJ. Revised in
response to referee's comments to improve clariry. Results are unchange
A Study of the 't Hooft Model with the Overlap Dirac Operator
We present the results of an exploratory numerical study of two dimensional
QCD with overlap fermions. We have performed extensive simulations for U(N_c)
and SU(N_c) color groups with N_c=2, 3, 4 and coupling constants chosen to
satisfy the 't Hooft condition g^2 N_c =const=4/3. We have computed the meson
spectrum and decay constants, the topological susceptibility and the chiral
condensate. For U(N_c) gauge groups, our results indicate that the
Witten-Veneziano relation is satisfied within our statistical errors and that
the chiral condensate for N_f=1 is compatible with a non-zero value. Our
results exhibit universality in N_c and confirm once more the excellent chiral
properties of the overlap-Dirac operator.Comment: 18 pages, 4 figure
Identification and validation of oncologic miRNA biomarkers for Luminal A-like breast cancer
Introduction: Breast cancer is a common disease with distinct tumor subtypes phenotypically characterized by ER and HER2/neu receptor status. MiRNAs play regulatory roles in tumor initiation and progression, and altered miRNA expression has been demonstrated in a variety of cancer states presenting the potential for exploitation as cancer biomarkers. Blood provides an excellent medium for biomarker discovery. This study investigated systemic miRNAs differentially expressed in Luminal A-like (ER+PR+HER2/neu-) breast cancer and their effectiveness as oncologic biomarkers in the clinical setting. Methods: Blood samples were prospectively collected from patients with Luminal A-like breast cancer (n=54) and controls (n=56). RNA was extracted, reverse transcribed and subjected to microarray analysis (n=10 Luminal A-like; n=10 Control). Differentially expressed miRNAs were identified by artificial neural network (ANN) data-mining algorithms. Expression of specific miRNAs was validated by RQ-PCR (n=44 Luminal A; n=46 Control) and potential relationships between circulating miRNA levels and clinicopathological features of breast cancer were investigated. Results: Microarray analysis identified 76 differentially expressed miRNAs. ANN revealed 10 miRNAs for further analysis ( miR-19b, miR-29a, miR-93, miR-181a, miR-182, miR-223, miR-301a, miR-423-5p, miR-486-5 and miR-652 ). The biomarker potential of 4 miRNAs ( miR-29a, miR-181a , miR-223 and miR-652 ) was confirmed by RQ-PCR, with significantly reduced expression in blood of women with Luminal A-like breast tumors compared to healthy controls (p=0.001, 0.004, 0.009 and 0.004 respectively). Binary logistic regression confirmed that combination of 3 of these miRNAs ( miR-29a, miR-181a and miR-652 ) could reliably differentiate between cancers and controls with an AUC of 0.80. Conclusion: This study provides insight into the underlying molecular portrait of Luminal A-like breast cancer subtype. From an initial 76 miRNAs, 4 were validated with altered expression in the blood of women with Luminal A-like breast cancer. The expression profiles of these 3 miRNAs, in combination with mammography, has potential to facilitate accurate subtype- specific breast tumor detection
- âŠ