533 research outputs found
Rotational levels in quantum dots
Low energy spectra of isotropic quantum dots are calculated in the regime of
low electron densities where Coulomb interaction causes strong correlations.
The earlier developed pocket state method is generalized to allow for
continuous rotations. Detailed predictions are made for dots of shallow
confinements and small particle numbers, including the occurance of spin
blockades in transport.Comment: RevTeX, 10 pages, 2 figure
Massless Dirac-Weyl Fermions in a T_3 Optical Lattice
We propose an experimental setup for the observation of quasi-relativistic
massless Fermions. It is based on a T_3 optical lattice, realized by three
pairs of counter-propagating lasers, filled with fermionic cold atoms. We show
that in the long wavelength approximation the T_3 Hamiltonian generalizes the
Dirac-Weyl Hamiltonian for the honeycomb lattice, however, with a larger value
of the pseudo-spin S=1. In addition to the Dirac cones, the spectrum includes a
dispersionless branch of localized states producing a finite jump in the atomic
density. Furthermore, implications for the Landau levels are discussed.Comment: 4 pages, 3 figure
Spin and Charge Luttinger-Liquid Parameters of the One-Dimensional Electron Gas
Low-energy properties of the homogeneous electron gas in one dimension are
completely described by the group velocities of its charge (plasmon) and spin
collective excitations. Because of the long range of the electron-electron
interaction, the plasmon velocity is dominated by an electrostatic contribution
and can be estimated accurately. In this Letter we report on Quantum Monte
Carlo simulations which demonstrate that the spin velocity is substantially
decreased by interactions in semiconductor quantum wire realizations of the
one-dimensional electron liquid.Comment: 13 pages, figures include
Effective charge-spin models for quantum dots
It is shown that at low densities, quantum dots with few electrons may be
mapped onto effective charge-spin models for the low-energy eigenstates. This
is justified by defining a lattice model based on a many-electron pocket-state
basis in which electrons are localised near their classical ground-state
positions. The equivalence to a single-band Hubbard model is then established
leading to a charge-spin () model which for most geometries reduces to a
spin (Heisenberg) model. The method is refined to include processes which
involve cyclic rotations of a ``ring'' of neighboring electrons. This is
achieved by introducing intermediate lattice points and the importance of ring
processes relative to pair-exchange processes is investigated using high-order
degenerate perturbation theory and the WKB approximation. The energy spectra
are computed from the effective models for specific cases and compared with
exact results and other approximation methods.Comment: RevTex, 24 pages, 7 figures submitted as compressed and PostScript
file
Remote-sensing-based analysis of the 1996 surge of Northern Inylchek Glacier, central Tien Shan, Kyrgyzstan
The evolution of Northern Inylchek Glacier and its proglacial lake - Upper Lake Merzbacher - during its 1996 surge and the surrounding decades is analyzed with remote sensing imagery. Overall retreat of the glacier from 1943 to 1996 enlarged the lake to 4 km long and ≈ 100 m deep. The surge in 1996 initiated between 12 September and 7 October and advanced the glacier by 3.7 km to override most of Upper Lake Merzbacher. The surge phase probably ended in December 1996 and involved mean flow velocities across the lower trunk of the glacier that reached 50 m d− 1 over a 32-day period. Water displaced by the surge from Upper Lake Merzbacher, totalling 1.5 × 108 m3 in volume, accelerated filling of Lower Lake Merzbacher downvalley and helped trigger this marginal ice-dammed lake to outburst in a jökulhlaup around late November/early December. The characteristics and duration of the surge render it as similar to temperate glacier surges elsewhere. It may have been facilitated by low basal friction caused by water-saturated sediments in the upper lake bed. Furthermore, bathymetric measurements show that the surge evacuated much sediment into the upper lake, causing its depth to reduce from 20 to 30 m in 1996 to 8 m by 2005 and 2 m by 2011; the corresponding deposition rates imply glacier-catchment specific mean sediment yields of 1.4 to 3.4 × 103 Mg km− 2 a− 1 in the years after the surge. Our study documents novel interactions within a cascade system of glaciers and lakes that exhibits surging and outburst-flood behavior
The quantized Hall conductance of a single atomic wire: A proposal based on synthetic dimensions
We propose a method by which the quantization of the Hall conductance can be
directly measured in the transport of a one-dimensional atomic gas. Our
approach builds on two main ingredients: (1) a constriction optical potential,
which generates a mesoscopic channel connected to two reservoirs, and (2) a
time-periodic modulation of the channel, specifically designed to generate
motion along an additional synthetic dimension. This fictitious dimension is
spanned by the harmonic-oscillator modes associated with the tightly-confined
channel, and hence, the corresponding "lattice sites" are intimately related to
the energy of the system. We analyze the quantum transport properties of this
hybrid two-dimensional system, highlighting the appealing features offered by
the synthetic dimension. In particular, we demonstrate how the energetic nature
of the synthetic dimension, combined with the quasi-energy spectrum of the
periodically-driven channel, allows for the direct and unambiguous observation
of the quantized Hall effect in a two-reservoir geometry. Our work illustrates
how topological properties of matter can be accessed in a minimal
one-dimensional setup, with direct and practical experimental consequences.
Average thermospheric wind patterns over the polar regions, as observed by CHAMP
International audienceMeasurements of the CHAMP accelerometer are utilized to investigate the average thermospheric wind distribution in the polar regions at altitudes around 400 km. This study puts special emphasis on the seasonal differences in the wind patterns. For this purpose 131 days centered on the June solstice of 2003 are considered. Within that period CHAMP's orbit is precessing once through all local times. The cross-track wind estimates of all 2030 passes are used to construct mean wind vectors for 918 equal-area cells. These bin averages are presented in corrected geomagnetic coordinates. Both hemispheres are considered simultaneously providing summer and winter responses for the same prevailing geophysical conditions. The period under study is characterized by high magnetic activity (Kp=4?) but moderate solar flux level (F10.7=124). Our analysis reveals clear wind features in the summer (Northern) Hemisphere. Over the polar cap there is a fast day-to-night flow with mean speeds surpassing 600 m/s in the dawn sector. At auroral latitudes we find strong westward zonal winds on the dawn side. On the dusk side, however, an anti-cyclonic vortex is forming. The dawn/dusk asymmetry is attributed to the combined action of Coriolis and centrifugal forces. Along the auroral oval the sunward streaming plasma causes a stagnation of the day-to-night wind. This effect is particularly clear on the dusk side. On the dawn side it is evident only from midnight to 06:00 MLT. The winter (Southern) Hemisphere reveals similar wind features, but they are less well ordered. The mean day-to-night wind over the polar cap is weaker by about 35%. Otherwise, the seasonal differences are mainly confined to the dayside (06:00?18:00 MLT). In addition, the larger offset between geographic and geomagnetic pole in the south also causes hemispheric differences of the thermospheric wind distribution
- …