340 research outputs found
Metastable and scaling regimes of a one-dimensional Kawasaki dynamics
We investigate the large-time scaling regimes arising from a variety of
metastable structures in a chain of Ising spins with both first- and
second-neighbor couplings while subject to a Kawasaki dynamics. Depending on
the ratio and sign of these former, different dynamic exponents are suggested
by finite-size scaling analyses of relaxation times. At low but
nonzero-temperatures these are calculated via exact diagonalizations of the
evolution operator in finite chains under several activation barriers. In the
absence of metastability the dynamics is always diffusive.Comment: 18 pages, 8 figures. Brief additions. To appear in Phys. Rev.
Directed diffusion of reconstituting dimers
We discuss dynamical aspects of an asymmetric version of assisted diffusion
of hard core particles on a ring studied by G. I. Menon {\it et al.} in J. Stat
Phys. {\bf 86}, 1237 (1997). The asymmetry brings in phenomena like kinematic
waves and effects of the Kardar-Parisi-Zhang nonlinearity, which combine with
the feature of strongly broken ergodicity, a characteristic of the model. A
central role is played by a single nonlocal invariant, the irreducible string,
whose interplay with the driven motion of reconstituting dimers, arising from
the assisted hopping, determines the asymptotic dynamics and scaling regimes.
These are investigated both analytically and numerically through
sector-dependent mappings to the asymmetric simple exclusion process.Comment: 10 pages, 6 figures. Slight corrections, one added reference. To
appear in J. Phys. Cond. Matt. (2007). Special issue on chemical kinetic
The Neurobiology and Psychology of Empathy
This work was supported by a grant from The Character Project (Psychology of Character), from Wake Forest University, via the John Templeton Foundation
Solution of a class of one-dimensional reaction-diffusion models in disordered media
We study a one-dimensional class of reaction-diffusion models on a
parameters manifold. The equations of motion of the correlation
functions close on this manifold. We compute exactly the long-time behaviour of
the density and correlation functions for
{\it quenched} disordered systems. The {\it quenched} disorder consists of
disconnected domains of reaction. We first consider the case where the disorder
comprizes a superposition, with different probabilistic weights, of finite
segments, with {\it periodic boundary conditions}. We then pass to the case of
finite segments with {\it open boundary conditions}: we solve the ordered
dynamics on a open lattice with help of the Dynamical Matrix Ansatz (DMA) and
investigate further its disordered version.Comment: 11 pages, no figures. To appear in Phys.Rev.
Generating Entangled Microwave Radiation Over Two Transmission Lines
Using a superconducting circuit, the Josephson mixer, we demonstrate the
first experimental realization of spatially separated two-mode squeezed states
of microwave light. Driven by a pump tone, a first Josephson mixer generates,
out of quantum vacuum, a pair of entangled fields at different frequencies on
separate transmission lines. A second mixer, driven by a -phase shifted
copy of the first pump tone, recombines and disentangles the two fields. The
resulting output noise level is measured to be lower than for vacuum state at
the input of the second mixer, an unambiguous proof of entanglement. Moreover,
the output noise level provides a direct, quantitative measure of entanglement,
leading here to the demonstration of 6 Mebit.s (Mega entangled bits per
second) generated by the first mixer.Comment: 5 pages, 4 figures. Supplementary Information can be found here as an
ancillary fil
Solution of a one-dimensional stochastic model with branching and coagulation reactions
We solve an one-dimensional stochastic model of interacting particles on a
chain. Particles can have branching and coagulation reactions, they can also
appear on an empty site and disappear spontaneously.
This model which can be viewed as an epidemic model and/or as a
generalization of the {\it voter} model, is treated analytically beyond the
{\it conventional} solvable situations. With help of a suitably chosen {\it
string function}, which is simply related to the density and the
non-instantaneous two-point correlation functions of the particles, exact
expressions of the density and of the non-instantaneous two-point correlation
functions, as well as the relaxation spectrum are obtained on a finite and
periodic lattice.Comment: 5 pages, no figure. To appear as a Rapid Communication in Physical
Review E (September 2001
Non-universal dynamics of dimer growing interfaces
A finite temperature version of body-centered solid-on-solid growth models
involving attachment and detachment of dimers is discussed in 1+1 dimensions.
The dynamic exponent of the growing interface is studied numerically via the
spectrum gap of the underlying evolution operator. The finite size scaling of
the latter is found to be affected by a standard surface tension term on which
the growth rates depend. This non-universal aspect is also corroborated by the
growth behavior observed in large scale simulations. By contrast, the
roughening exponent remains robust over wide temperature ranges.Comment: 11 pages, 7 figures. v2 with some slight correction
Comparison between disordered quantum spin 1/2 chains
We study the magnetic properties of two types of one dimensional XX spin 1/2
chains. The first type has only nearest neighbor interactions which can be
either antiferromagnetic or ferromagnetic and the second type which has both
nearest neighbor and next nearest neighbor interactions, but only
antiferromagnetic in character. We study these systems in the presence of low
transverse magnetic fields both analytically and numerically. Comparison of
results show a close relation between the two systems, which is in agreement
with results previously found in Heisenberg chains by means of a numerical real
space renormalization group procedure.Comment: 7 page
Interfaces with a single growth inhomogeneity and anchored boundaries
The dynamics of a one dimensional growth model involving attachment and
detachment of particles is studied in the presence of a localized growth
inhomogeneity along with anchored boundary conditions. At large times, the
latter enforce an equilibrium stationary regime which allows for an exact
calculation of roughening exponents. The stochastic evolution is related to a
spin Hamiltonian whose spectrum gap embodies the dynamic scaling exponent of
late stages. For vanishing gaps the interface can exhibit a slow morphological
transition followed by a change of scaling regimes which are studied
numerically. Instead, a faceting dynamics arises for gapful situations.Comment: REVTeX, 11 pages, 9 Postscript figure
- …