620 research outputs found
Filling a silo with a mixture of grains: Friction-induced segregation
We study the filling process of a two-dimensional silo with inelastic
particles by simulation of a granular media lattice gas (GMLG) model. We
calculate the surface shape and flow profiles for a monodisperse system and we
introduce a novel generalization of the GMLG model for a binary mixture of
particles of different friction properties where, for the first time, we
measure the segregation process on the surface. The results are in good
agreement with a recent theory, and we explain the observed small deviations by
the nonuniform velocity profile.Comment: 10 pages, 5 figures, to be appear in Europhys. Let
On the characterisation of paired monotone metrics
Hasegawa and Petz introduced the notion of dual statistically monotone
metrics. They also gave a characterisation theorem showing that
Wigner-Yanase-Dyson metrics are the only members of the dual family. In this
paper we show that the characterisation theorem holds true under more general
hypotheses.Comment: 12 pages, to appear on Ann. Inst. Stat. Math.; v2: changes made to
conform to accepted version, title changed as wel
Trajectory attractors for the Sun-Liu model for nematic liquid crystals in 3D
In this paper we prove the existence of a trajectory attractor (in the sense
of V.V. Chepyzhov and M.I. Vishik) for a nonlinear PDE system coming from a 3D
liquid crystal model accounting for stretching effects. The system couples a
nonlinear evolution equation for the director d (introduced in order to
describe the preferred orientation of the molecules) with an incompressible
Navier-Stokes equation for the evolution of the velocity field u. The technique
is based on the introduction of a suitable trajectory space and of a metric
accounting for the double-well type nonlinearity contained in the director
equation. Finally, a dissipative estimate is obtained by using a proper
integrated energy inequality. Both the cases of (homogeneous) Neumann and
(non-homogeneous) Dirichlet boundary conditions for d are considered.Comment: 32 page
Microscopic Model for Granular Stratification and Segregation
We study segregation and stratification of mixtures of grains differing in
size, shape and material properties poured in two-dimensional silos using a
microscopic lattice model for surface flows of grains. The model incorporates
the dissipation of energy in collisions between rolling and static grains and
an energy barrier describing the geometrical asperities of the grains. We study
the phase diagram of the different morphologies predicted by the model as a
function of the two parameters. We find regions of segregation and
stratification, in agreement with experimental finding, as well as a region of
total mixing.Comment: 4 pages, 7 figures, http://polymer.bu.edu/~hmakse/Home.htm
Longtime behavior of nonlocal Cahn-Hilliard equations
Here we consider the nonlocal Cahn-Hilliard equation with constant mobility
in a bounded domain. We prove that the associated dynamical system has an
exponential attractor, provided that the potential is regular. In order to do
that a crucial step is showing the eventual boundedness of the order parameter
uniformly with respect to the initial datum. This is obtained through an
Alikakos-Moser type argument. We establish a similar result for the viscous
nonlocal Cahn-Hilliard equation with singular (e.g., logarithmic) potential. In
this case the validity of the so-called separation property is crucial. We also
discuss the convergence of a solution to a single stationary state. The
separation property in the nonviscous case is known to hold when the mobility
degenerates at the pure phases in a proper way and the potential is of
logarithmic type. Thus, the existence of an exponential attractor can be proven
in this case as well
Continuous Avalanche Segregation of Granular Mixtures in Thin Rotating Drums
We study segregation of granular mixtures in the continuous avalanche regime
(for frequencies above ~ 1 rpm) in thin rotating drums using a continuum theory
for surface flows of grains. The theory predicts profiles in agreement with
experiments only when we consider a flux dependent velocity of flowing grains.
We find the segregation of species of different size and surface properties,
with the smallest and roughest grains being found preferentially at the center
of the drum. For a wide difference between the species we find a complete
segregation in agreement with experiments. In addition, we predict a transition
to a smooth segregation regime - with an power-law decay of the concentrations
as a function of radial coordinate - as the size ratio between the grains is
decreased towards one.Comment: 4 pages, 4 figures, http://polymer.bu.edu/~hmaks
A Hedged Monte Carlo Approach to Real Option Pricing
In this work we are concerned with valuing optionalities associated to invest
or to delay investment in a project when the available information provided to
the manager comes from simulated data of cash flows under historical (or
subjective) measure in a possibly incomplete market. Our approach is suitable
also to incorporating subjective views from management or market experts and to
stochastic investment costs. It is based on the Hedged Monte Carlo strategy
proposed by Potters et al (2001) where options are priced simultaneously with
the determination of the corresponding hedging. The approach is particularly
well-suited to the evaluation of commodity related projects whereby the
availability of pricing formulae is very rare, the scenario simulations are
usually available only in the historical measure, and the cash flows can be
highly nonlinear functions of the prices.Comment: 25 pages, 14 figure
On the General Ericksen-Leslie System: Parodi's Relation, Well-posedness and Stability
In this paper we investigate the role of Parodi's relation in the
well-posedness and stability of the general Ericksen-Leslie system modeling
nematic liquid crystal flows. First, we give a formal physical derivation of
the Ericksen-Leslie system through an appropriate energy variational approach
under Parodi's relation, in which we can distinguish the
conservative/dissipative parts of the induced elastic stress. Next, we prove
global well-posedness and long-time behavior of the Ericksen-Leslie system
under the assumption that the viscosity is sufficiently large. Finally,
under Parodi's relation, we show the global well-posedness and Lyapunov
stability for the Ericksen-Leslie system near local energy minimizers. The
connection between Parodi's relation and linear stability of the
Ericksen-Leslie system is also discussed
Three-dimensional observation of the fracture process zone in anisotropic granitic rock by x-ray CT scan
see Abstract Volum
Aging in humid granular media
Aging behavior is an important effect in the friction properties of solid
surfaces. In this paper we investigate the temporal evolution of the static
properties of a granular medium by studying the aging over time of the maximum
stability angle of submillimetric glass beads. We report the effect of several
parameters on these aging properties, such as the wear on the beads, the stress
during the resting period, and the humidity content of the atmosphere. Aging
effects in an ethanol atmosphere are also studied. These experimental results
are discussed at the end of the paper.Comment: 7 pages, 9 figure
- …