130 research outputs found
Fracture criteria for discontinuously reinforced metal matrix composites
Summarized is the progress achieved during the period September 16, 1987 to August 15, l988 on NASA Grant NAG1-724, Fracture Criteria for Discontinuously Reinforced Metal Matrix Composites. Appended are copies of three manuscripts prepared under NASA funding during the performance period
Plasma dust crystallization
In a ground-based definition study, a concept for a new type of microgravity experiment is developed. We formed a new state of matter: a crystalline lattice structure of charged micron-size spheres, suspended in a charge-neutral plasma. The plasma is formed by a low-pressure radio-frequency argon discharge. Solid microspheres are introduced, and they gain a negative electric charge. They are cooled by molecular drag on the ambient neutral gas. They are detected by laser light scattering and video photography. Laboratory experiments have demonstrated that a two-dimensional nonquantum lattice forms through the Coulomb interaction of these spheres. Microgravity is thought to be required to observe a three-dimensional structure
Fracture criteria for discontinuously reinforced metal matrix composites
The effect of sample configuration on the details of initial crack propagation in discontinuously whisker reinforced aluminum metal matrix composites was investigated. Care was taken to allow direct comparison of fracture toughness values utilizing differing sample configurations and orientations, holding all materials variables constant, e.g., extrusion ration, heat treatment, and chemistry
Waves and instability in a one-dimensional microfluidic array
Motion in a one-dimensional (1D) microfluidic array is simulated. Water
droplets, dragged by flowing oil, are arranged in a single row, and due to
their hydrodynamic interactions spacing between these droplets oscillates with
a wave-like motion that is longitudinal or transverse. The simulation yields
wave spectra that agree well with experiment. The wave-like motion has an
instability which is confirmed to arise from nonlinearities in the interaction
potential. The instability's growth is spatially localized. By selecting an
appropriate correlation function, the interaction between the longitudinal and
transverse waves is described
The effect of thermophoresis on the discharge parameters in complex plasma experiments
Thermophoresis is a tool often applied in complex plasma experiments. One of
the usual stated benefits over other experimental tools is that changes induced
by thermophoresis neither directly depend on, nor directly influence, the
plasma parameters. From electronic data, plasma emission profiles in the
sheath, and Langmuir probe data in the plasma bulk, we conclude that this
assumption does not hold. An important effect on the levitation of dust
particles in argon plasma is observed as well. The reason behind the changes in
plasma parameters seems to be the change in neutral atom density accompanying
the increased gas temperature while running at constant pressure.Comment: 14 pages, 12 figure
Fokker-Planck Equation for Boltzmann-type and Active Particles: transfer probability approach
Fokker-Planck equation with the velocity-dependent coefficients is considered
for various isotropic systems on the basis of probability transition (PT)
approach. This method provides the self-consistent and universal description of
friction and diffusion for Brownian particles. Renormalization of the friction
coefficient is shown to occur for two dimensional (2-D) and three dimensional
(3-D) cases, due to the tensorial character of diffusion. The specific forms of
PT are calculated for the Boltzmann-type of collisions and for the
absorption-type of collisions (the later are typical for dusty plasmas and some
other systems). Validity of the Einstein's relation for the Boltzmann-type
collisions is analyzed for the velocity-dependent friction and diffusion
coefficients. For the Boltzmann-type collisions in the region of very high
grain velocity as well as it is always for non-Boltzmann collisions, such as,
e.g., absorption collisions, the Einstein relation is violated, although some
other relations (determined by the structure of PT) can exist. The generalized
friction force is investigated in dusty plasma in the framework of the PT
approach. The relation between this force, negative collecting friction force
and scattering and collecting drag forces is established.+AFwAXA- The concept
of probability transition is used to describe motion of active particles in an
ambient medium. On basis of the physical arguments the PT for a simple model of
the active particle is constructed and the coefficients of the relevant
Fokker-Planck equation are found. The stationary solution of this equation is
typical for the simplest self-organized molecular machines.+AFwAXA- PACS
number(s): 52.27.Lw, 52.20.Hv, 52.25.Fi, 82.70.-yComment: 18 page
Measuring Strategic Uncertainty in Coordination Games
Lecture on the first SFB/TR 15 meeting, Gummersbach, July, 18 - 20, 2004This paper explores predictability of behavior in coordination games with multiple equilibria. In a laboratory experiment we measure subjects' certainty equivalents for three coordination games and one lottery. Attitudes towards strategic uncertainty in coordination games are related to risk aversion, experience seeking, gender and age. From the distribution of certainty equivalents among participating students we estimate probabilities for successful coordination in a wide range of coordination games. For many games success of coordination is predictable with a reasonable error rate. The best response of a risk neutral player is close to the global-game solution. Comparing choices in coordination games with revealed risk aversion, we estimate subjective probabilities for successful coordination. In games with a low coordination requirement, most subjects underestimate the probability of success. In games with a high coordination requirement, most subjects overestimate this probability. Data indicate that subjects have probabilistic beliefs about success or failure of coordination rather than beliefs about individual behavior of other players
Long-range attraction between particles in dusty plasma and partial surface tension of dusty phase boundary
Effective potential of a charged dusty particle moving in homogeneous plasma
has a negative part that provides attraction between similarly charged dusty
particles. A depth of this potential well is great enough to ensure both
stability of crystal structure of dusty plasma and sizable value of surface
tension of a boundary surface of dusty region. The latter depends on the
orientation of the surface relative to the counter-ion flow, namely, it is
maximal and positive for the surface normal to the flow and minimal and
negative for the surface along the flow. For the most cases of dusty plasma in
a gas discharge, a value of the first of them is more than sufficient to ensure
stability of lenticular dusty phase void oriented across the counter-ion flow.Comment: LATEX, REVTEX4, 7 pages, 6 figure
Particles as probes for complex plasmas in front of biased surfaces
An interesting aspect in the research of complex (dusty) plasmas is the
experimental study of the interaction of micro-particles with the surrounding
plasma for diagnostic purposes. Local electric fields can be determined from
the behaviour of particles in the plasma, e.g. particles may serve as
electrostatic probes. Since in many cases of applications in plasma technology
it is of great interest to describe the electric field conditions in front of
floating or biased surfaces, the confinement and behaviour of test particles is
studied in front of floating walls inserted into a plasma as well as in front
of additionally biased surfaces. For the latter case, the behaviour of
particles in front of an adaptive electrode, which allows for an efficient
confinement and manipulation of the grains, has been experimentally studied in
dependence on the discharge parameters and on different bias conditions of the
electrode. The effect of the partially biased surface (dc, rf) on the charged
micro-particles has been investigated by particle falling experiments. In
addition to the experiments we also investigate the particle behaviour
numerically by molecular dynamics, in combination with a fluid and
particle-in-cell description of the plasma.Comment: 39 pages, 16 figures, submitted to New J. Phy
- …