4 research outputs found
E-education in pathology including certification of e-institutions
E–education or electronically transferred continuous education in pathology is one major application of virtual microscopy. The basic conditions and properties of acoustic and visual information transfer, of teaching and learning processes, as well as of knowledge and competence, influence its implementation to a high degree. Educational programs and structures can be judged by access to the basic conditions, by description of the teaching resources, methods, and its program, as well as by identification of competences, and development of an appropriate evaluation system. Classic teaching and learning methods present a constant, usually non-reversible information flow. They are subject to personal circumstances of both teacher and student. The methods of information presentation need to be distinguished between static and dynamic, between acoustic and visual ones. Electronic tools in education include local manually assisted tools (language assistants, computer-assisted design, etc.), local passive tools (slides, movies, sounds, music), open access tools (internet), and specific tools such as Webinars. From the medical point of view information content can be divided into constant (gross and microscopic anatomy) and variable (disease related) items. Most open access available medical courses teach constant information such as anatomy or physiology. Mandatory teaching resources are image archives with user–controlled navigation and labelling, student–oriented user manuals, discussion forums, and expert consultation. A classic undergraduate electronic educational system is WebMic which presents with histology lectures. An example designed for postgraduate teaching is the digital lung pathology system. It includes a description of diagnostic and therapeutic features of 60 rare and common lung diseases, partly in multimedia presentation. Combining multimedia features with the organization structures of a virtual pathology institution will result in a virtual pathology education institution (VPEI), which can develop to a partly automated distant learning faculty in medicine
Interactive and automated application of virtual microscopy
Virtual microscopy can be applied in an interactive and an automated manner. Interactive application is performed in close association to conventional microscopy. It includes image standardization suitable to the performance of an individual pathologist such as image colorization, white color balance, or individual adjusted brightness. The steering commands have to include selection of wanted magnification, easy navigation, notification, and simple measurements (distances, areas). The display of the histological image should be adjusted to the physical limits of the human eye, which are determined by a view angle of approximately 35 seconds. A more sophisticated performance should include acoustic commands that replace the corresponding visual commands. Automated virtual microscopy includes so-called microscopy assistants which can be defined similar to the developed assistants in computer based editing systems (Microsoft Word, etc.). These include an automated image standardization and correction algorithms that excludes images of poor quality (for example uni-colored or out-of-focus images), an automated selection of the most appropriate field of view, an automated selection of the best magnification, and finally proposals of the most probable diagnosis. A quality control of the final diagnosis, and feedback to the laboratory determine the proposed system. The already developed tools of such a system are described in detail, as well as the results of first trials. In order to enhance the speed of such a system, and to allow further user-independent development a distributed implementation probably based upon Grid technology seems to be appropriate. The advantages of such a system as well as the present pathology environment and its expectations will be discussed in detail