1,357 research outputs found

    Reaction cross sections for proton scattering from stable and unstable nuclei based on a microscopic approach

    Full text link
    Microscopic optical model potential results for reaction cross sections of proton elastic scattering are presented. The applications cover the 10-1000 MeV energy range and consider both stable and unstable nuclei. The study is based on in-medium g-matrix full-folding optical model approach with the appropriate relativistic kinematic corrections needed for the higher energy applications. The effective interactions are based on realistic NN potentials supplemented with a separable non-Hermitian term to allow optimum agreement with current NN phase-shift analyzes, particularly the inelasticities above pion production threshold. The target ground-state densities are obtained from Hartree-Fock-Bogoliubov calculations based on the finite range, density dependent Gogny force. The evaluated reaction cross sections for proton scattering are compared with measurements and their systematics is analyzed. A simple function of the total cross sections in terms of the atomic mass number is observed at high energies. At low energies, however, discrepancies with the available data are observed, being more pronounced in the lighter systems.Comment: 11 pages, 4 figures, submitted to Phys. Rev.

    Structure properties of even-even actinides

    Full text link
    Structure properties of fifty five even-even actinides have been calculated using the Gogny D1S force and the Hartree-Fock-Bogoliubov approach as well as the configuration mixing method. Theoretical results are compared with experimental data.Comment: 5 pages, 5 figures, proceeding of FUSION0

    Structure of even-even nuclei using a mapped collective Hamiltonian and the D1S Gogny interaction

    Full text link
    A systematic study of low energy nuclear structure at normal deformation is carried out using the Hartree-Fock-Bogoliubov theory extended by the Generator Coordinate Method and mapped onto a 5-dimensional collective quadrupole Hamiltonian. Results obtained with the Gogny D1S interaction are presented from dripline to dripline for even-even nuclei with proton numbers Z=10 to Z=110 and neutron numbers N less than 200. The properties calculated for the ground states are their charge radii, 2-particle separation energies, correlation energies, and the intrinsic quadrupole shape parameters. For the excited spectroscopy, the observables calculated are the excitation energies and quadrupole as well as monopole transition matrix elements. We examine in this work the yrast levels up to J=6, the lowest excited 0^+ states, and the two next yrare 2^+ states. The theory is applicable to more than 90% of the nuclei which have tabulated measurements. The data set of the calculated properties of 1712 even-even nuclei, including spectroscopic properties for 1693 of them, are provided in CEA website and EPAPS repository with this article \cite{epaps}.Comment: 51 pages with 26 Figures and 4 internal tables; this version is accepted by Physical Review

    Open Problems in α\alpha Particle Condensation

    Full text link
    α\alpha particle condensation is a novel state in nuclear systems. We briefly review the present status on the study of α\alpha particle condensation and address the open problems in this research field: α\alpha particle condensation in heavier systems other than the Hoyle state, linear chain and α\alpha particle rings, Hoyle-analogue states with extra neutrons, α\alpha particle condensation related to astrophysics, etc.Comment: 12 pages. To be published in J. of Phys. G special issue on Open Problems in Nuclear Structure (OPeNST

    Beyond mean-field description of the low-lying spectrum of 16O

    Full text link
    Starting from constrained Skyrme-mean-field calculations, the low-energy excitation spectrum of 16O is calculated by configuration mixing of particle-number and angular-momentum projected mean-field states in the framework of the Generator Coordinate Method. Without any adjustable parameters, this approach gives a very good description of those states and their transition moments that can be described with our restriction to axially and reflection-symmetric shapes. The structure of low-lying 0+ states is analyzed in terms of self-consistent 0p-0h, 2p-2h, and 4p-4h Hartree-Fock states.Comment: 15 pages LATEX, 6 figures, 3 tables, revision of sections 4 and

    The Heavy Photon Search beamline and its performance

    Full text link
    The Heavy Photon Search (HPS) is an experiment to search for a hidden sector photon, aka a heavy photon or dark photon, in fixed target electroproduction at the Thomas Jefferson National Accelerator Facility (JLab). The HPS experiment searches for the e+^+e^- decay of the heavy photon with bump hunt and detached vertex strategies using a compact, large acceptance forward spectrometer, consisting of a silicon microstrip detector (SVT) for tracking and vertexing, and a PbWO4_4 electromagnetic calorimeter for energy measurement and fast triggering. To achieve large acceptance and good vertexing resolution, the first layer of silicon detectors is placed just 10 cm downstream of the target with the sensor edges only 500 μ\mum above and below the beam. Placing the SVT in such close proximity to the beam puts stringent requirements on the beam profile and beam position stability. As part of an approved engineering run, HPS took data in 2015 and 2016 at 1.05 GeV and 2.3 GeV beam energies, respectively. This paper describes the beam line and its performance during that data taking
    corecore