132 research outputs found

    Sensorimotor adaptation as a behavioural biomarker of early spinocerebellar ataxia type 6.

    Get PDF
    Early detection of the behavioural deficits of neurodegenerative diseases may help to describe the pathogenesis of such diseases and establish important biomarkers of disease progression. The aim of this study was to identify how sensorimotor adaptation of the upper limb, a cerebellar-dependent process restoring movement accuracy after introduction of a perturbation, is affected at the pre-clinical and clinical stages of spinocerebellar ataxia type 6 (SCA6), an inherited neurodegenerative disease. We demonstrate that initial adaptation to the perturbation was significantly impaired in the eighteen individuals with clinical motor symptoms but mostly preserved in the five pre-clinical individuals. Moreover, the amount of error reduction correlated with the clinical symptoms, with the most symptomatic patients adapting the least. Finally both pre-clinical and clinical individuals showed significantly reduced de-adaptation performance after the perturbation was removed in comparison to the control participants. Thus, in this large study of motor features in SCA6, we provide novel evidence for the existence of subclinical motor dysfunction at a pre-clinical stage of SCA6. Our findings show that testing sensorimotor de-adaptation could provide a potential predictor of future motor deficits in SCA6

    New agents for targeting of IL-13RA2 expressed in primary human and canine brain tumors.

    Get PDF
    Interleukin 13 receptor alpha 2 (IL-13RA2) is over-expressed in a vast majority of human patients with high-grade astrocytomas like glioblastoma. Spontaneous astrocytomas in dogs resemble human disease and have been proposed as translational model system for investigation of novel therapeutic strategies for brain tumors. We have generated reagents for both detection and therapeutic targeting of IL-13RA2 in human and canine brain tumors. Peptides from three different regions of IL-13RA2 with 100% sequence identity between human and canine receptors were used as immunogens for generation of monoclonal antibodies. Recombinant canine mutant IL-13 (canIL-13.E13K) and canIL-13.E13K based cytotoxin were also produced. The antibodies were examined for their immunoreactivities in western blots, immunohistochemistry, immunofluorescence and cell binding assays using human and canine tumor specimen sections, tissue lysates and established cell lines; the cytotoxin was tested for specific cell killing. Several isolated MAbs were immunoreactive to IL-13RA2 in western blots of cell and tissue lysates from glioblastomas from both human and canine patients. Human and canine astrocytomas and oligodendrogliomas were also positive for IL-13RA2 to various degrees. Interestingly, both human and canine meningiomas also exhibited strong reactivity. Normal human and canine brain samples were virtually negative for IL-13RA2 using the newly generated MAbs. MAb 1E10B9 uniquely worked on tissue specimens and western blots, bound live cells and was internalized in GBM cells over-expressing IL-13RA2. The canIL-13.E13K cytotoxin was very potent and specific in killing canine GBM cell lines. Thus, we have obtained several monoclonal antibodies against IL-13RA2 cross-reacting with human and canine receptors. In addition to GBM, other brain tumors, such as high grade oligodendrogliomas, meningiomas and canine choroid plexus papillomas, appear to express the receptor at high levels and thus may be appropriate candidates for IL-13RA2-targeted imaging/therapies. Canine spontaneous primary brain tumors represent an excellent translational model for human counterparts
    corecore