229 research outputs found
High-sensitivity monitoring of micromechanical vibration using optical whispering gallery mode resonators
The inherent coupling of optical and mechanical modes in high finesse optical
microresonators provide a natural, highly sensitive transduction mechanism for
micromechanical vibrations. Using homodyne and polarization spectroscopy
techniques, we achieve shot-noise limited displacement sensitivities of
10^(-19) m Hz^(-1/2). In an unprecedented manner, this enables the detection
and study of a variety of mechanical modes, which are identified as radial
breathing, flexural and torsional modes using 3-dimensional finite element
modelling. Furthermore, a broadband equivalent displacement noise is measured
and found to agree well with models for thermorefractive noise in silica
dielectric cavities. Implications for ground-state cooling, displacement
sensing and Kerr squeezing are discussed.Comment: 25 pages, 8 figure
Thermo-optic locking of a semiconductor laser to a microcavity resonance
We experimentally demonstrate thermo-optic locking of a semiconductor laser
to an integrated toroidal optical microresonator. The lock is maintained for
time periods exceeding twelve hours, without requiring any electronic control
systems. Fast control is achieved by optical feedback induced by scattering
centers within the microresonator, with thermal locking due to optical heating
maintaining constructive interference between the cavity and the laser.
Furthermore, the optical feedback acts to narrow the laser linewidth, with
ultra high quality microtoroid resonances offering the potential for ultralow
linewidth on-chip lasers.Comment: 6 pages, 6 figure
Controlling free electrons with optical whispering-gallery modes
Free-electron beams are versatile probes of microscopic structure and composition1,2, and have revolutionized atomic-scale imaging in several fields, from solid-state physics to structural biology3. Over the past decade, the manipulation and interaction of electrons with optical fields have enabled considerable progress in imaging methods4, near-field electron acceleration5,6, and four-dimensional microscopy techniques with high temporal and spatial resolution7. However, electron beams typically couple only weakly to optical excitations, and emerging applications in electron control and sensing8,9,10,11 require large enhancements using tailored fields and interactions. Here we couple a free-electron beam to a travelling-wave resonant cavity mode. The enhanced interaction with the optical whispering-gallery modes of dielectric microresonators induces a strong phase modulation on co-propagating electrons, which leads to a spectral broadening of 700 electronvolts, corresponding to the absorption and emission of hundreds of photons. By mapping the near-field interaction with ultrashort electron pulses in space and time, we trace the lifetime of the the microresonator following a femtosecond excitation and observe the spectral response of the cavity. The natural matching of free electrons to these quintessential optical modes could enable the application of integrated photonics technology in electron microscopy, with broad implications for attosecond structuring, probing quantum emitters and possible electron–light entanglement
Resolved Sideband Cooling of a Micromechanical Oscillator
Micro- and nanoscale opto-mechanical systems provide radiation pressure
coupling of optical and mechanical degree of freedom and are actively pursued
for their ability to explore quantum mechanical phenomena of macroscopic
objects. Many of these investigations require preparation of the mechanical
system in or close to its quantum ground state. Remarkable progress in ground
state cooling has been achieved for trapped ions and atoms confined in optical
lattices. Imperative to this progress has been the technique of resolved
sideband cooling, which allows overcoming the inherent temperature limit of
Doppler cooling and necessitates a harmonic trapping frequency which exceeds
the atomic species' transition rate. The recent advent of cavity back-action
cooling of mechanical oscillators by radiation pressure has followed a similar
path with Doppler-type cooling being demonstrated, but lacking inherently the
ability to attain ground state cooling as recently predicted. Here we
demonstrate for the first time resolved sideband cooling of a mechanical
oscillator. By pumping the first lower sideband of an optical microcavity,
whose decay rate is more than twenty times smaller than the eigen-frequency of
the associated mechanical oscillator, cooling rates above 1.5 MHz are attained.
Direct spectroscopy of the motional sidebands reveals 40-fold suppression of
motional increasing processes, which could enable reaching phonon occupancies
well below unity (<0.03). Elemental demonstration of resolved sideband cooling
as reported here should find widespread use in opto-mechanical cooling
experiments. Apart from ground state cooling, this regime allows realization of
motion measurement with an accuracy exceeding the standard quantum limit.Comment: 13 pages, 5 figure
A microchip optomechanical accelerometer
The monitoring of accelerations is essential for a variety of applications
ranging from inertial navigation to consumer electronics. The basic operation
principle of an accelerometer is to measure the displacement of a flexibly
mounted test mass; sensitive displacement measurement can be realized using
capacitive, piezo-electric, tunnel-current, or optical methods. While optical
readout provides superior displacement resolution and resilience to
electromagnetic interference, current optical accelerometers either do not
allow for chip-scale integration or require bulky test masses. Here we
demonstrate an optomechanical accelerometer that employs ultra-sensitive
all-optical displacement read-out using a planar photonic crystal cavity
monolithically integrated with a nano-tethered test mass of high mechanical
Q-factor. This device architecture allows for full on-chip integration and
achieves a broadband acceleration resolution of 10 \mu g/rt-Hz, a bandwidth
greater than 20 kHz, and a dynamic range of 50 dB with sub-milliwatt optical
power requirements. Moreover, the nano-gram test masses used here allow for
optomechanical back-action in the form of cooling or the optical spring effect,
setting the stage for a new class of motional sensors.Comment: 16 pages, 9 figure
Equivalence between free quantum particles and those in harmonic potentials and its application to instantaneous changes
This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly citedIn quantum physics the free particle and the harmonically trapped particle are arguably the most important systems a physicist needs to know about. It is little known that, mathematically, they are one and the same. This knowledge helps us to understand either from the viewpoint of the other. Here we show that all general time-dependent solutions of the free-particle Schrodinger equation can be mapped to solutions of the Schrodinger equation for harmonic potentials, both the trapping oscillator and the inverted `oscillator'. This map is fully invertible and therefore induces an isomorphism between both types of system, they are equivalent. A composition of the map and its inverse allows us to map from one harmonic oscillator to another with a different spring constant and different center position. The map is independent of the state of the system, consisting only of a coordinate transformation and multiplication by a form factor, and can be chosen such that the state is identical in both systems at one point in time. This transition point in time can be chosen freely, the wave function of the particle evolving in time in one system before the transition point can therefore be linked up smoothly with the wave function for the other system and its future evolution after the transition point. Such a cut-and-paste procedure allows us to describe the instantaneous changes of the environment a particle finds itself in. Transitions from free to trapped systems, between harmonic traps of different spring constants or center positions, or, from harmonic binding to repulsive harmonic potentials are straightforwardly modelled. This includes some time dependent harmonic potentials. The mappings introduced here are computationally more efficient than either state-projection or harmonic oscillator propagator techniques conventionally employed when describing instantaneous (non-adiabatic) changes of a quantum particle's environmentPeer reviewe
Cavity-mediated electron-photon pairs
Quantum information, communication, and sensing rely on the generation and control of quantum correlations in complementary degrees of freedom. Free electrons coupled to photonics promise novel hybrid quantum technologies, although single-particle correlations and entanglement have yet to be shown. In this work, we demonstrate the preparation of electron-photon pair states using the phase-matched interaction of free electrons with the evanescent vacuum field of a photonic chip–based optical microresonator. Spontaneous inelastic scattering produces intracavity photons coincident with energy-shifted electrons, which we employ for noise-suppressed optical mode imaging. This parametric pair-state preparation will underpin the future development of free-electron quantum optics, providing a route to quantum-enhanced imaging, electron-photon entanglement, and heralded single-electron and Fock-state photon sources
Strong and Tunable Nonlinear Optomechanical Coupling in a Low-Loss System
A major goal in optomechanics is to observe and control quantum behavior in a
system consisting of a mechanical resonator coupled to an optical cavity. Work
towards this goal has focused on increasing the strength of the coupling
between the mechanical and optical degrees of freedom; however, the form of
this coupling is crucial in determining which phenomena can be observed in such
a system. Here we demonstrate that avoided crossings in the spectrum of an
optical cavity containing a flexible dielectric membrane allow us to realize
several different forms of the optomechanical coupling. These include cavity
detunings that are (to lowest order) linear, quadratic, or quartic in the
membrane's displacement, and a cavity finesse that is linear in (or independent
of) the membrane's displacement. All these couplings are realized in a single
device with extremely low optical loss and can be tuned over a wide range in
situ; in particular, we find that the quadratic coupling can be increased three
orders of magnitude beyond previous devices. As a result of these advances, the
device presented here should be capable of demonstrating the quantization of
the membrane's mechanical energy.Comment: 12 pages, 4 figures, 1 tabl
Sculpting oscillators with light within a nonlinear quantum fluid
Seeing macroscopic quantum states directly remains an elusive goal. Particles
with boson symmetry can condense into such quantum fluids producing rich
physical phenomena as well as proven potential for interferometric devices
[1-10]. However direct imaging of such quantum states is only fleetingly
possible in high-vacuum ultracold atomic condensates, and not in
superconductors. Recent condensation of solid state polariton quasiparticles,
built from mixing semiconductor excitons with microcavity photons, offers
monolithic devices capable of supporting room temperature quantum states
[11-14] that exhibit superfluid behaviour [15,16]. Here we use microcavities on
a semiconductor chip supporting two-dimensional polariton condensates to
directly visualise the formation of a spontaneously oscillating quantum fluid.
This system is created on the fly by injecting polaritons at two or more
spatially-separated pump spots. Although oscillating at tuneable THz-scale
frequencies, a simple optical microscope can be used to directly image their
stable archetypal quantum oscillator wavefunctions in real space. The
self-repulsion of polaritons provides a solid state quasiparticle that is so
nonlinear as to modify its own potential. Interference in time and space
reveals the condensate wavepackets arise from non-equilibrium solitons. Control
of such polariton condensate wavepackets demonstrates great potential for
integrated semiconductor-based condensate devices.Comment: accepted in Nature Physic
Searching for Exoplanets Using a Microresonator Astrocomb
Detection of weak radial velocity shifts of host stars induced by orbiting
planets is an important technique for discovering and characterizing planets
beyond our solar system. Optical frequency combs enable calibration of stellar
radial velocity shifts at levels required for detection of Earth analogs. A new
chip-based device, the Kerr soliton microcomb, has properties ideal for
ubiquitous application outside the lab and even in future space-borne
instruments. Moreover, microcomb spectra are ideally suited for astronomical
spectrograph calibration and eliminate filtering steps required by conventional
mode-locked-laser frequency combs. Here, for the calibration of astronomical
spectrographs, we demonstrate an atomic/molecular line-referenced,
near-infrared soliton microcomb. Efforts to search for the known exoplanet HD
187123b were conducted at the Keck-II telescope as a first in-the-field
demonstration of microcombs
- …