12 research outputs found

    Involvement of NF-κB/miR-448 regulatory feedback loop in chemotherapy-induced epithelial–mesenchymal transition of breast cancer cells

    No full text
    The epithelial–mesenchymal transition (EMT) induced by chemotherapeutic agents promotes malignant tumor progression; however, the mechanism underlying the drug-induced EMT remains unclear. In this study, we reported that miR-448 is the most downregulated microRNA following chemotherapy. Suppression of miR-448 correlated with EMT induction in breast cancer in vitro and in vivo. With the use of chromatin immunoprecipitation-seq analysis, we demonstrated that miR-448 suppression induces EMT by directly targeting special AT-rich sequence-binding protein-1 (SATB1) mRNA, leading to elevated levels of amphiregulin and thereby, increasing epidermal growth factor receptor (EGFR)-mediated Twist1 expression, as well as nuclear factor κB (NF-κB) activation. On the other hand, we also found that the adriamycin-activated NF-κB directly binds the promoter of miR-448 suppressing its transcription, suggesting a positive feedback loop between NF-κB and miR-448. Furthermore, all patients who received cyclophosphamide (CP), epirubicin plus taxotere/CP, epirubicin plus 5-fluorouracil chemotherapy showed miR-448 suppression, an increased SATB1, Twist1 expression and acquisition of mesenchymal phenotypes. These findings reveal an underlying regulatory pathway, in which the autoregulation between NF-κB and miR-448 is important for restrain miR-448 suppression upon chemotherapy and may have a role in the regulation of chemotherapy-induced EMT. Disruption of the NF-κB-miR-448 feedback loop during clinical treatment may improve the chemotherapy response of human breast cancers in which EMT is a critical component
    corecore