7 research outputs found

    Modeling the Interaction between β

    Get PDF
    The effect of β-amyloid aggregates on activity of choline acetyltransferase (ChAT) which is responsible for synthesizing acetylcholine (ACh) in human brain is investigated through the two-enzyme/two-compartment (2E2C) model where the presynaptic neuron is considered as compartment 1 while both the synaptic cleft and the postsynaptic neuron are considered as compartment 2 through suggesting three different kinetic mechanisms for the inhibition effect. It is found that the incorporation of ChAT inhibition by β-amyloid aggregates into the 2E2C model is able to yield dynamic solutions for concentrations of generated β-amyloid, ACh, choline, acetate, and pH in addition to the rates of ACh synthesis and ACh hydrolysis in compartments 1 and 2. It is observed that ChAT activity needs a high concentration of β-amyloid aggregates production rate. It is found that ChAT activity is reduced significantly when neurons are exposed to high levels of β-amyloid aggregates leading to reduction in levels of ACh which is one of the most significant physiological symptoms of AD. Furthermore, the system of ACh neurocycle is dominated by the oscillatory behavior when ChAT enzyme is completely inhibited by β-amyloid. It is observed that the direct inactivation of ChAT by β-amyloid aggregates may be a probable mechanism contributing to the development of AD

    A modeling and simulation study of siderophore mediated antagonism in dual-species biofilms

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Several bacterial species possess chelation mechanisms that allow them to scavenge iron from the environment under conditions of limitation. To this end they produce siderophores that bind the iron and make it available to the cells later on, while rendering it unavailable to other organisms. The phenomenon of siderophore mediated antagonism has been studied to some extent for suspended populations where it was found that the chelation ability provides a growth advantage over species that do not have this possibility. However, most bacteria live in biofilm communities. In particular <it>Pseudomonas fluorescens </it>and <it>Pseudomonas putida</it>, the species that have been used in most experimental studies of the phenomenon, are known to be prolific biofilm formers, but only very few experimental studies of iron chelation have been published to date for the biofilm setting. We address this question in the present study.</p> <p>Methods</p> <p>Based on a previously introduced model of iron chelation and an existing model of biofilm growth we formulate a model for iron chelation and competition in dual species biofilms. This leads to a highly nonlinear system of partial differential equations which is studied in computer simulation experiments.</p> <p>Conclusions</p> <p>(i) Siderophore production can give a growth advantage also in the biofilm setting, (ii) diffusion facilitates and emphasizes this growth advantage, (iii) the magnitude of the growth advantage can also depend on the initial inoculation of the substratum, (iv) a new mass transfer boundary condition was derived that allows to a priori control the expect the expected average thickness of the biofilm in terms of the model parameters.</p
    corecore