24 research outputs found

    Sex-specific and hormone-controlled expression of a vitellogenin-encoding gene in the gypsy moth

    Full text link
    Microvitellogenin and vitellogenin cDNA from Manduca sexta (tobacco hornworm) were tested for use as molecular probes to investigate the expression of genes coding for vitellogenins in Spodoptera frugiperda (fall armyworm) and Lymantria dispar (gypsy m

    Data from: Genetic variation in HIF signaling underlies quantitative variation in physiological and life history traits within lowland butterfly populations

    Full text link
    Oxygen conductance to the tissues determines aerobic metabolic performance in most eukaryotes but has cost/benefit tradeoffs. Here we examine in lowland populations of a butterfly a genetic polymorphism affecting oxygen conductance via the hypoxia inducible factor (HIF) pathway, which senses intracellular oxygen and controls the development of oxygen delivery networks. Genetically distinct clades of Glanville fritillary (Melitaea cinxia) across a continental scale maintain, at intermediate frequencies, alleles in a metabolic enzyme (succinate dehydrogenase, SDH) that regulates hypoxia inducible factor (HIF-1α). One Sdhd allele was associated with reduced SDH activity rate, two-fold greater cross-sectional area of tracheoles in flight muscle, and better flight performance. Butterflies with less tracheal development had greater post-flight hypoxia signaling, swollen, disrupted mitochondria and accelerated aging of flight metabolic performance. Allelic associations with metabolic and aging phenotypes were replicated in samples from different clades. Experimentally elevated succinate in pupae increased the abundance of hypoxia inducible factor (HIF-1α) and expression of genes responsive to HIF activation, including tracheal morphogenesis genes. These results indicate that the hypoxia inducible pathway, even in lowland populations, can be an important axis for genetic variation underlying intraspecific differences in oxygen delivery, physiological performance and life history

    Comparative Phenotypic Analysis of the Bordetella parapertussis Isolate Chosen for Genomic Sequencing

    Get PDF
    The genomes of three closely related bordetellae are currently being sequenced, thus providing an opportunity for comparative genomic approaches driven by an understanding of the comparative biology of these three bacteria. Although the other strains being sequenced are well studied, the strain of Bordetella parapertussis chosen for sequencing is a recent human clinical isolate (strain 12822) that has yet to be characterized in detail. This investigation reports the first phenotypic characterization of this strain, which will likely become the prototype for this species in comparison with the prototype strains of B. pertussis (Tohama I), B. bronchiseptica (RB50), and other isolates of B. parapertussis. Multiple in vitro and in vivo assays distinguished each species. B. parapertussis was more similar to B. bronchiseptica than to B. pertussis in many assays, including in BvgS signaling characteristics, presence of urease activity, regulation of urease expression by BvgAS, virulence in the respiratory tracts of immunocompromised mice, induction of anti-Bordetella antibodies, and serum antimicrobial resistance. In other assays, B. parapertussis was distinct from all other species (in pigment production) or more similar to B. pertussis (by lack of motility and cytotoxicity to a macrophage-like cell line). These results begin to provide phenotypes that can be related to genetic differences identified in the genomic sequences of bordetellae
    corecore