4,604 research outputs found

    Random Magnetic Interactions and Spin Glass Order Competing with Superconductivity: Interference of the Quantum Parisi Phase

    Full text link
    We analyse the competition between spin glass (SG) order and local pairing superconductivity (SC) in the fermionic Ising spin glass with frustrated fermionic spin interaction and nonrandom attractive interaction. The phase diagram is presented for all temperatures T and chemical potentials \mu. SC-SG transitions are derived for the relevant ratios between attractive and frustrated-magnetic interaction. Characteristic features of pairbreaking caused by random magnetic interaction and/or by spin glass proximity are found. The existence of low-energy excitations, arising from replica permutation symmetry breaking (RPSB) in the Quantum Parisi Phase, is shown to be relevant for the SC-SG phase boundary. Complete 1-step RPSB-calculations for the SG-phase are presented together with a few results for infinity-step breaking. Suppression of reentrant SG - SC - SG transitions due to RPSB is found and discussed in context of ferromagnet - SG boundaries. The relative positioning of the SC and SG phases presents a theoretical landmark for comparison with experiments in heavy fermion systems and high T_c superconductors. We find a crossover line traversing the SG-phase with (\mu=0,T=0) as its quantum critical (end)point in complete RPSB, and scaling is proposed for its vicinity. We argue that this line indicates a random field instability and suggest Dotsenko-Mezard vector replica symmetry breaking to occur at low temperatures beyond.Comment: 24 pages, 14 figures replaced by published versio

    Pseudogaps and Charge Band in the Parisi Solution of Insulating and Superconducting Electronic Spin Glasses at Arbitrary Fillings

    Full text link
    We report progress in understanding the fermionic Ising spin glass with arbitrary filling. A crossover from a magnetically disordered single band phase via two intermediate bands just below the freezing temperature to a 3-band structure at still lower temperatures - beyond an almost random field instability - is shown to emerge in the magnetic phase. An attempt is made to explain the exact solution in terms of a quantum Parisi phase. A central nonmagnetic band is found and seen to become sharply separated at T=0 by gaps from upper and lower magnetic bands. The gap sizes tend towards zero as the number of replica symmetry breaking steps increases towards infinity. In an extended model, the competition between local pairing superconductivity and spin glass order is discussed.Comment: 3 pages, contribution to "ECRYS-99

    See-Saw Masses for Quarks and Leptons in SU(5)

    Full text link
    We build on a recent paper by Grinstein, Redi and Villadoro, where a see-saw like mechanism for quark masses was derived in the context of spontaneously broken gauged flavour symmetries. The see-saw mechanism is induced by heavy Dirac fermions which are added to the Standard Model spectrum in order to render the flavour symmetries anomaly-free. In this letter we report on the embedding of these fermions into multiplets of an SU(5) grand unified theory and discuss a number of interesting consequences.Comment: 15 pages, 4 figures (v3: outline restructured, modified mechanism to cancel anomalies

    How to evaluate ground-state landscapes of disordered systems thermodynamical correctly

    Get PDF
    Ground states of three-dimensional EA Ising spin glasses are calculated for sizes up to 14^3 using a combination of a genetic algorithm and cluster-exact approximation. For each realization several independent ground states are obtained. Then, by applying ballistic search and T=0 Monte-Carlo simulations, it is ensured that each ground state appears with the same probability. Consequently, the results represent the true T=0 thermodynamic behavior. The distribution P(|q|) of overlaps is evaluated. For increasing size the width of P(|q|) and the fraction of the distribution below q_0=0.5 converge to zero. This indicates that for the infinite system P(|q|) is a delta function, in contrast to previous results. Thus, the ground-state behavior is dominated by few large clusters of similar ground states.Comment: 7 pages revtex, 6 figures, 27 reference

    Semi-fermionic representation of SU(N) Hamiltonians

    Full text link
    We represent the generators of the SU(N) algebra as bilinear combinations of Fermi operators with imaginary chemical potential. The distribution function, consisting of a minimal set of discrete imaginary chemical potentials, is found for arbitrary N. This representation leads to the conventional temperature diagram technique with standard Feynman codex, except that the Matsubara frequencies are determined by neither integer nor half-integer numbers. The real-time Schwinger-Keldysh formalism is formulated in the framework of complex distribution functions. We discuss the continuous large N and SU(2) large spin limits. We illustrate the application of this technique for magnetic and spin-liquid states of the Heisenberg model.Comment: 11 pages, 7 EPS figures included, extended versio

    Quantum Lubrication: Suppression of Friction in a First Principle Four Stroke Heat Engine

    Full text link
    A quantum model of a heat engine resembling the Otto cycle is employed to explore strategies to suppress frictional losses. These losses are caused by the inability of the engine's working medium to follow adiabatically the change in the Hamiltonian during the expansion and compression stages. By adding external noise to the engine, frictional losses can be suppressed.Comment: references added some minor change

    Suppression of vortex channeling in meandered YBa2Cu3O7-d grain boundaries

    Full text link
    We report on the in-plane magnetic field (H) dependence of the critical current density (Jc) in meandered and planar single grain boundaries (GBs) isolated in YBa2Cu3O7-d (YBCO) coated conductors. The Jc(H)properties of the planar GB are consistent with those previously seen in single GBs of YBCO films grown on SrTiO3 bi-crystals. In the straight boundary a characteristic flux channeling regime when H is oriented near the GB plane, associated with a reduced Jc, is seen. The meandered GB does not show vortex channeling since it is not possible for a sufficient length of vortex line to lie within it.Comment: Submitted to AP
    • …
    corecore