5,490 research outputs found
See-Saw Masses for Quarks and Leptons in SU(5)
We build on a recent paper by Grinstein, Redi and Villadoro, where a see-saw
like mechanism for quark masses was derived in the context of spontaneously
broken gauged flavour symmetries. The see-saw mechanism is induced by heavy
Dirac fermions which are added to the Standard Model spectrum in order to
render the flavour symmetries anomaly-free. In this letter we report on the
embedding of these fermions into multiplets of an SU(5) grand unified theory
and discuss a number of interesting consequences.Comment: 15 pages, 4 figures (v3: outline restructured, modified mechanism to
  cancel anomalies
Semi-fermionic representation of SU(N) Hamiltonians
We represent the generators of the SU(N) algebra as bilinear combinations of
Fermi operators with imaginary chemical potential. The distribution function,
consisting of a minimal set of discrete imaginary chemical potentials, is found
for arbitrary N. This representation leads to the conventional temperature
diagram technique with standard Feynman codex, except that the Matsubara
frequencies are determined by neither integer nor half-integer numbers. The
real-time Schwinger-Keldysh formalism is formulated in the framework of complex
distribution functions. We discuss the continuous large N and SU(2) large spin
limits. We illustrate the application of this technique for magnetic and
spin-liquid states of the Heisenberg model.Comment: 11 pages, 7 EPS figures included, extended versio
Random Magnetic Interactions and Spin Glass Order Competing with Superconductivity: Interference of the Quantum Parisi Phase
We analyse the competition between spin glass (SG) order and local pairing
superconductivity (SC) in the fermionic Ising spin glass with frustrated
fermionic spin interaction and nonrandom attractive interaction. The phase
diagram is presented for all temperatures T and chemical potentials \mu. SC-SG
transitions are derived for the relevant ratios between attractive and
frustrated-magnetic interaction. Characteristic features of pairbreaking caused
by random magnetic interaction and/or by spin glass proximity are found. The
existence of low-energy excitations, arising from replica permutation symmetry
breaking (RPSB) in the Quantum Parisi Phase, is shown to be relevant for the
SC-SG phase boundary. Complete 1-step RPSB-calculations for the SG-phase are
presented together with a few results for infinity-step breaking. Suppression
of reentrant SG - SC - SG transitions due to RPSB is found and discussed in
context of ferromagnet - SG boundaries. The relative positioning of the SC and
SG phases presents a theoretical landmark for comparison with experiments in
heavy fermion systems and high T_c superconductors. We find a crossover line
traversing the SG-phase with (\mu=0,T=0) as its quantum critical (end)point in
complete RPSB, and scaling is proposed for its vicinity. We argue that this
line indicates a random field instability and suggest Dotsenko-Mezard vector
replica symmetry breaking to occur at low temperatures beyond.Comment: 24 pages, 14 figures replaced by published versio
Suppression of vortex channeling in meandered YBa2Cu3O7-d grain boundaries
We report on the in-plane magnetic field (H) dependence of the critical
current density (Jc) in meandered and planar single grain boundaries (GBs)
isolated in YBa2Cu3O7-d (YBCO) coated conductors. The Jc(H)properties of the
planar GB are consistent with those previously seen in single GBs of YBCO films
grown on SrTiO3 bi-crystals. In the straight boundary a characteristic flux
channeling regime when H is oriented near the GB plane, associated with a
reduced Jc, is seen. The meandered GB does not show vortex channeling since it
is not possible for a sufficient length of vortex line to lie within it.Comment: Submitted to AP
Pseudogaps and Charge Band in the Parisi Solution of Insulating and Superconducting Electronic Spin Glasses at Arbitrary Fillings
We report progress in understanding the fermionic Ising spin glass with
arbitrary filling. A crossover from a magnetically disordered single band phase
via two intermediate bands just below the freezing temperature to a 3-band
structure at still lower temperatures - beyond an almost random field
instability - is shown to emerge in the magnetic phase. An attempt is made to
explain the exact solution in terms of a quantum Parisi phase. A central
nonmagnetic band is found and seen to become sharply separated at T=0 by gaps
from upper and lower magnetic bands. The gap sizes tend towards zero as the
number of replica symmetry breaking steps increases towards infinity. In an
extended model, the competition between local pairing superconductivity and
spin glass order is discussed.Comment: 3 pages, contribution to "ECRYS-99
Proton mass effects in wide-angle Compton scattering
We investigate proton mass effects in the handbag approach to wide-angle
Compton scattering. We find that theoretical uncertainties due to the proton
mass are significant for photon energies presently studied at Jefferson Lab.
With the proposed energy upgrade such uncertainties will be clearly reduced.Comment: 4 pages, uses revtex, 3 figure
Bloch oscillations of Bose-Einstein condensates: Breakdown and revival
We investigate the dynamics of Bose-Einstein condensates (BEC) in a tilted
one-dimensional periodic lattice within the mean-field (Gross-Pitaevskii)
description. Unlike in the linear case the Bloch oscillations decay because of
nonlinear dephasing. Pronounced revival phenomena are observed. These are
analyzed in detail in terms of a simple integrable model constructed by an
expansion in Wannier-Stark resonance states. We also briefly discuss the pulsed
output of such systems for stronger static fields.Comment: RevTeX4, 9 pages, 14 figure
- …
