1,736 research outputs found
AlGaAs lasers with micro-cleaved mirrors suitable for monolithic integration
A technique has been developed for cleaving the mirrors of AlGaAs lasers without cleaving the
substrate. Micro-cleaving involves cleaving a suspended heterostructure cantilever by ultrasonic
vibrations. Lasers with microcleaved mirrors have threshold currents and quantum efficiencies
identical to those of similar devices with conventionally cleaved mirrors
Self-synchronized duty-cycling for sensor networks with energy harvesting capabilities: Implementation in Wiselib
In this work we present a protocol for a self- synchronized duty-cycling mechanism in wireless sensor net- works with energy harvesting capabilities. The protocol is im- plemented in Wiselib, a library of generic algorithms for sensor networks. Simulations are conducted with the sensor network simulator Shawn. They are based on the specifications of real hardware known as iSense sensor nodes. The experimental results show that the proposed mechanism is able to adapt to changing energy availabilities. Moreover, it is shown that the system is very robust against packet loss.Postprint (published version
Global irrigation water demand: Variability and uncertainties arising from agricultural and climate data sets
Agricultural water use accounts for around 70% of the total water that is withdrawn from surface water and groundwater. We use a new, gridded, global-scale water balance model to estimate interannual variability in global irrigation water demand arising from climate data sets and uncertainties arising from agricultural and climate data sets. We used contemporary maps of irrigation and crop distribution, and so do not account for variability or trends in irrigation area or cropping. We used two different global maps of irrigation and two different reconstructions of daily weather 1963–2002. Simulated global irrigation water demand varied by ∼30%, depending on irrigation map or weather data. The combined effect of irrigation map and weather data generated a global irrigation water use range of 2200 to 3800 km3 a−1. Weather driven variability in global irrigation was generally less than ±300 km3 a−1, globally (\u3c∼10%), but could be as large as ±70% at the national scale
The significance of local water resources captured in small reservoirs for crop production – A global-scale analysis
Rainwater harvesting, broadly defined as the collection and storage of surface runoff, has a long history in supplying water for agricultural purposes. Despite its significance, rainwater harvesting in small reservoirs has previously been overlooked in large-scale assessments of agricultural water supply and demand. We used a macroscale hydrological model, observed climate data and other physical datasets to explore the potential role of small, localized rainwater harvesting systems in supplying water for irrigated areas. We first estimated the potential contribution of local water harvesting to supply currently irrigated areas. We then explored the potential of supplemental irrigation applied to all cropland areas to increase crop evapotranspiration (or green water flow), using locally stored surface runoff in small reservoirs for different scenarios of installed reservoir capacity. The estimated increase in green water flow varied between 623 and 1122 km3 a1 . We assessed the implications of this increase in green water flows for cereal production by assuming a constant crop water productivity in areas where current levels of crop yield are below global averages. Globally, the supplemental irrigation of existing cropland areas could increase cereal production by 35% for a medium variant of reservoir capacity, with large potential increases in Africa and Asia. As small reservoirs can significantly impact the hydrological regime of river basins, we also assessed the impacts of small reservoirs on downstream river flow and quantified evaporation losses from small reservoirs
Low Ply Drawings of Trees
We consider the recently introduced model of \emph{low ply graph drawing}, in
which the ply-disks of the vertices do not have many common overlaps, which
results in a good distribution of the vertices in the plane. The
\emph{ply-disk} of a vertex in a straight-line drawing is the disk centered at
it whose radius is half the length of its longest incident edge. The largest
number of ply-disks having a common overlap is called the \emph{ply-number} of
the drawing.
We focus on trees. We first consider drawings of trees with constant
ply-number, proving that they may require exponential area, even for stars, and
that they may not even exist for bounded-degree trees. Then, we turn our
attention to drawings with logarithmic ply-number and show that trees with
maximum degree always admit such drawings in polynomial area.Comment: This is a complete access version of a paper that will appear in the
proceedings of GD201
Imeall : a computational framework for the calculation of the atomistic properties of grain boundaries
We describe the Imeall package for the calculation and indexing of atomistic properties of grain boundaries in materials. The package provides a structured database for the storage of atomistic structures and their associated properties, equipped with a programmable application interface to interatomic potential calculators. The database adopts a general indexing system that allows storing arbitrary grain boundary structures for any crystalline material. The usefulness of the Imeall package is demonstrated by computing, storing, and analysing relaxed grain boundary structures for a dense range of low index orientation axis symmetric tilt and twist boundaries in -iron for various interatomic potentials. The package’s capabilities are further demonstrated by carrying out automated structure generation, dislocation analysis, interstitial site detection, and impurity segregation energies across the grain boundary range. All computed atomistic properties are exposed via a web framework, providing open access to the grain boundary repository and the analytic tools suite
Maximizing Maximal Angles for Plane Straight-Line Graphs
Let be a plane straight-line graph on a finite point set
in general position. The incident angles of a vertex
of are the angles between any two edges of that appear consecutively in
the circular order of the edges incident to .
A plane straight-line graph is called -open if each vertex has an
incident angle of size at least . In this paper we study the following
type of question: What is the maximum angle such that for any finite set
of points in general position we can find a graph from a certain
class of graphs on that is -open? In particular, we consider the
classes of triangulations, spanning trees, and paths on and give tight
bounds in most cases.Comment: 15 pages, 14 figures. Apart of minor corrections, some proofs that
were omitted in the previous version are now include
Approximate Consensus in Highly Dynamic Networks: The Role of Averaging Algorithms
In this paper, we investigate the approximate consensus problem in highly
dynamic networks in which topology may change continually and unpredictably. We
prove that in both synchronous and partially synchronous systems, approximate
consensus is solvable if and only if the communication graph in each round has
a rooted spanning tree, i.e., there is a coordinator at each time. The striking
point in this result is that the coordinator is not required to be unique and
can change arbitrarily from round to round. Interestingly, the class of
averaging algorithms, which are memoryless and require no process identifiers,
entirely captures the solvability issue of approximate consensus in that the
problem is solvable if and only if it can be solved using any averaging
algorithm. Concerning the time complexity of averaging algorithms, we show that
approximate consensus can be achieved with precision of in a
coordinated network model in synchronous
rounds, and in rounds when
the maximum round delay for a message to be delivered is . While in
general, an upper bound on the time complexity of averaging algorithms has to
be exponential, we investigate various network models in which this exponential
bound in the number of nodes reduces to a polynomial bound. We apply our
results to networked systems with a fixed topology and classical benign fault
models, and deduce both known and new results for approximate consensus in
these systems. In particular, we show that for solving approximate consensus, a
complete network can tolerate up to 2n-3 arbitrarily located link faults at
every round, in contrast with the impossibility result established by Santoro
and Widmayer (STACS '89) showing that exact consensus is not solvable with n-1
link faults per round originating from the same node
Constructing a comprehensive disaster resilience index: The case of Italy
Measuring disaster resilience is a key component of successful disaster risk management
and climate change adaptation. Quantitative, indicator-based assessments are typically
applied to evaluate resilience by combining various indicators of performance into a single
composite index. Building upon extensive research on social vulnerability and coping/adaptive
capacity, we first develop an original, comprehensive disaster resilience index (CDRI) at
municipal level across Italy, to support the implementation of the Sendai Framework for
Disaster Risk Reduction 2015–2030. As next, we perform extensive sensitivity and robustness
analysis to assess how various methodological choices, especially the normalisation
and aggregation methods applied, influence the ensuing rankings. The results show patterns
of social vulnerability and resilience with sizeable variability across the northern and
southern regions. We propose several statistical methods to allow decision makers to
explore the territorial, social and economic disparities, and choose aggregation methods
best suitable for the various policy purposes. These methods are based on linear and nonliner
normalization approaches combining the OWA and LSP aggregators. Robust resilience
rankings are determined by relative dominance across multiple methods. The dominance
measures can be used as a decision-making benchmark for climate change
adaptation and disaster risk management strategies and plans
- …