55 research outputs found

    Effect of citric acid and microbial phytase on serum enzyme activities and plasma minerals retention in broiler chicks

    Get PDF
    An experiment was conducted to study the effect of microbial phytase supplementation and citric acid in broiler chicks fed corn-soybean meal base diets on enzyme activities and some blood parameters of serum and plasma minerals concentration in Ross 308 strain broilers. The data was analysed using a randomized complete block design with factorial arrangement of 3×3, three levels of citric acids (0, 3 and 6%) and three levels of phytase (0, 500 and 1000 enzyme unit per kg). There were three replicates for each treatment that total to 270 chicks for the whole experiment. The results indicated that addition of citric acid to diets caused significant decrease in alkaline phosphatase (P<0.05), lactate dehydrogenase (P<0.01) activities, cholesterol (P<0.05) and plasma phosphorus (P) (P<0.01) and Fe (P<0.05) concentrations. Microbial phytase caused significant decrease (P<0.01) in serum enzyme activities and plasma Fe concentration and significantly increased (P<0.01) aspartate aminotransferase activity, triglyceride and plasma P concentration. Microbial phytase and citric acid could modify some serum enzyme activities and increase the availability and use of minerals for growth and performance improvement of broilers. It is therefore necessary to re-evaluate mineral requirements of broiler chickens when a diet is supplemented with phytase and citric acid.Key words: Citric acid, microbial phytase, plasma minerals, serum enzyme activity, broilers

    Atomic layer deposition of ZnS nanotubes

    Full text link
    We report on growth of high-aspect-ratio (≳300\gtrsim300) zinc sulfide nanotubes with variable, precisely tunable, wall thicknesses and tube diameters into highly ordered pores of anodic alumina templates by atomic layer deposition (ALD) at temperatures as low as 75 ∘^{\circ}C. Various characterization techniques are employed to gain information on the composition, morphology, and crystal structure of the synthesized samples. Besides practical applications, the ALD-grown tubes could be envisaged as model systems for the study of a certain class of size-dependent quantum and classical phenomena.Comment: 1 LaTeX source file, 8 eps figures, and the manuscript in PDF forma

    Single-charge escape processes through a hybrid turnstile in a dissipative environment

    Get PDF
    We have investigated the static, charge-trapping properties of a hybrid superconductor---normal metal electron turnstile embedded into a high-ohmic environment. The device includes a local Cr resistor on one side of the turnstile, and a superconducting trapping island on the other side. The electron hold times, t ~ 2-20s, in our two-junction circuit are comparable with those of typical multi-junction, N >= 4, normal-metal single-electron tunneling devices. A semi-phenomenological model of the environmental activation of tunneling is applied for the analysis of the switching statistics. The experimental results are promising for electrical metrology.Comment: Submitted to New Journal of Physics 201

    Arrays of Josephson junctions in an environment with vanishing impedance

    Full text link
    The Hamiltonian operator for an unbiased array of Josephson junctions with gate voltages is constructed when only Cooper pair tunnelling and charging effects are taken into account. The supercurrent through the system and the pumped current induced by changing the gate voltages periodically are discussed with an emphasis on the inaccuracies in the Cooper pair pumping. Renormalisation of the Hamiltonian operator is used in order to reliably parametrise the effects due to inhomogeneity in the array and non-ideal gating sequences. The relatively simple model yields an explicit, testable prediction based on three experimentally motivated and determinable parameters.Comment: 13 pages, 9 figures, uses RevTeX and epsfig, Revised version, Better readability and some new result

    Comparison of Coulomb Blockade Thermometers with the International Temperature Scale PLTS-2000

    Full text link
    The operation of the primary Coulomb blockade thermometer (CBT) is based on a measurement of bias voltage dependent conductance of arrays of tunnel junctions between normal metal electrodes. Here we report on a comparison of a CBT with a high accuracy realization of the PLTS-2000 temperature scale in the range from 0.008 K to 0.65 K. An overall agreement of about 1% was found for temperatures above 0.25 K. For lower temperatures increasing differences are caused by thermalization problems which are accounted for by numerical calculations based on electron-phonon decoupling.Comment: 6 pages, 5 figure

    Charging Ultrasmall Tunnel Junctions in Electromagnetic Environment

    Full text link
    We have investigated the quantum admittance of an ultrasmall tunnel junction with arbitrary tunneling strength under an electromagnetic environment. Using the functional integral approach a close analytical expression of the quantum admittance is derived for a general electromagnetic environment. We then consider a specific controllable environment where a resistance is connected in series with the tunneling junction, for which we derived the dc quantum conductance from the zero frequency limit of the imaginary part of the quantum admittance. For such electromagnetic environment the dc conductance has been investigated in recent experiments, and our numerical results agree quantitatively very well with the measurements. Our complete numerical results for the entire range of junction conductance and electromagnetic environmental conductance confirmed the few existing theoretical conclusions.Comment: 7 pages, 3 ps-figure

    Electron transport through interacting quantum dots

    Full text link
    We present a detailed theoretical investigation of the effect of Coulomb interactions on electron transport through quantum dots and double barrier structures connected to a voltage source via an arbitrary linear impedance. Combining real time path integral techniques with the scattering matrix approach we derive the effective action and evaluate the current-voltage characteristics of quantum dots at sufficiently large conductances. Our analysis reveals a reach variety of different regimes which we specify in details for the case of chaotic quantum dots. At sufficiently low energies the interaction correction to the current depends logarithmically on temperature and voltage. We identify two different logarithmic regimes with the crossover between them occurring at energies of order of the inverse dwell time of electrons in the dot. We also analyze the frequency-dependent shot noise in chaotic quantum dots and elucidate its direct relation to interaction effects in mesoscopic electron transport.Comment: 21 pages, 4 figures. References added, discussion slightly extende

    Multiple Imputation Ensembles (MIE) for dealing with missing data

    Get PDF
    Missing data is a significant issue in many real-world datasets, yet there are no robust methods for dealing with it appropriately. In this paper, we propose a robust approach to dealing with missing data in classification problems: Multiple Imputation Ensembles (MIE). Our method integrates two approaches: multiple imputation and ensemble methods and compares two types of ensembles: bagging and stacking. We also propose a robust experimental set-up using 20 benchmark datasets from the UCI machine learning repository. For each dataset, we introduce increasing amounts of data Missing Completely at Random. Firstly, we use a number of single/multiple imputation methods to recover the missing values and then ensemble a number of different classifiers built on the imputed data. We assess the quality of the imputation by using dissimilarity measures. We also evaluate the MIE performance by comparing classification accuracy on the complete and imputed data. Furthermore, we use the accuracy of simple imputation as a benchmark for comparison. We find that our proposed approach combining multiple imputation with ensemble techniques outperform others, particularly as missing data increases

    Current Fluctuations and Electron-Electron Interactions in Coherent Conductors

    Full text link
    We analyze current fluctuations in mesoscopic coherent conductors in the presence of electron-electron interactions. In a wide range of parameters we obtain explicit universal dependencies of the current noise on temperature, voltage and frequency. We demonstrate that Coulomb interaction decreases the Nyquist noise. In this case the interaction correction to the noise spectrum is governed by the combination ∑nTn(Tn−1)\sum_nT_n(T_n-1), where TnT_n is the transmission of the nn-th conducting mode. The effect of electron-electron interactions on the shot noise is more complicated. At sufficiently large voltages we recover two different interaction corrections entering with opposite signs. The net result is proportional to ∑nTn(Tn−1)(1−2Tn)\sum_nT_n(T_n-1)(1-2T_n), i.e. Coulomb interaction decreases the shot noise at low transmissions and increases it at high transmissions.Comment: 16 pages, 2 figure

    Fuzzy min-max neural networks for categorical data: application to missing data imputation

    Get PDF
    The fuzzy min–max neural network classifier is a supervised learning method. This classifier takes the hybrid neural networks and fuzzy systems approach. All input variables in the network are required to correspond to continuously valued variables, and this can be a significant constraint in many real-world situations where there are not only quantitative but also categorical data. The usual way of dealing with this type of variables is to replace the categorical by numerical values and treat them as if they were continuously valued. But this method, implicitly defines a possibly unsuitable metric for the categories. A number of different procedures have been proposed to tackle the problem. In this article, we present a new method. The procedure extends the fuzzy min–max neural network input to categorical variables by introducing new fuzzy sets, a new operation, and a new architecture. This provides for greater flexibility and wider application. The proposed method is then applied to missing data imputation in voting intention polls. The micro data—the set of the respondents’ individual answers to the questions—of this type of poll are especially suited for evaluating the method since they include a large number of numerical and categorical attributes
    • …
    corecore