489 research outputs found

    Geology of the Elisenheim area, Windhoek district, South West Africa, with special reference to the Matchless amphibolite belt

    Get PDF
    The Elisenheim area is situated just north of Windhoek within the Windhoek Formation of the Swakop Subgroup and is underlain by monotonous succession of semi-pelitic schists with intercalations of amphibolite, talc schist, graphitic schist and marble. Petrographic studies on units of the Matchless amphibolite which outcrop in the south of the property, have resulted in the recognition of three different types of amphibolite, namely, epidote amphibolite, porphyroblastic amphibolite and chlorite-amphibole schist. Amphibole porphyroblasts generally display patchy and zonal intergrowths of hornblende and actinolite which are indicative of non-equilibration during prograde metamorphism. Talc schists have been mapped in the north of the property. All lithotypes have undergone three phases of deformation (Fl, FZ, F3) which terminated with the faulting which underlies the Klein Windhoek, Dobra, Tigenschlücht and Kuruma rivers. Medium grade regional metamorphism accompanied F 1, F Z and F 3 and outlasted the latter. Mineral assemblages throughout the area are those of the amphibolite facies and P, T conditions prevailing during metamorphism are estimated to have been at least 5 kb at ~ 550° C. Petrochemical evidence indicates that the Matchless amphibolites are igneous in origin and genetically related to the ultrabasic talc schists. They are similar in composition to oceanic tholeiites and are thought to have been extruded subaqueously

    Systematic effects of carbon doping on the superconducting properties of Mg(B1−x_{1-x}Cx_x)2_2

    Full text link
    The upper critical field, Hc2H_{c2}, of Mg(B1−x_{1-x}Cx_x)2_2 has been measured in order to probe the maximum magnetic field range for superconductivity that can be attained by C doping. Carbon doped boron filaments are prepared by CVD techniques, and then these fibers are then exposed to Mg vapor to form the superconducting compound. The transition temperatures are depressed about 1K/1 K/% C and Hc2(T=0)H_{c2}(T=0) rises at about 5T/5 T/% C. This means that 3.5% C will depress TcT_c from 39.2K39.2 K to 36.2K36.2 K and raise Hc2(T=0)H_{c2}(T=0) from 16.0T16.0 T to 32.5T32.5 T. Higher fields are probably attainable in the region of 5% C to 7% C. These rises in Hc2H_{c2} are accompanied by a rise in resistivity at 40K40 K from about 0.5μΩcm0.5 \mu \Omega cm to about 10μΩcm10 \mu \Omega cm. Given that the samples are polycrystalline wire segments, the experimentally determined Hc2(T)H_{c2}(T) curves represent the upper Hc2(T)H_{c2}(T) manifold associated with H⊥cH\perp c

    Penetration Depth and Anisotropy in MgB2

    Full text link
    The penetration depth lambda of MgB2 was deduced from both the ac susceptibility chi and the magnetization M(H) of sorted powders. The good agreement between the two sets of data without geometric correction for the grain orientation suggests that MgB2 is an isotropic superconductor.Comment: 9 pages, 5 figures; submitted to Physical Review B (February 28, 2001; revised June 28, 2001); reference list update

    Effects of Neutron Irradiation on Carbon Doped MgB2 Wire Segments

    Full text link
    We have studied the evolution of superconducting and normal state properties of neutron irradiated Mg(B.962_{.962}C.038_{.038})2_2 wire segments as a function of post exposure annealing time and temperature. The initial fluence fully suppressed superconductivity and resulted in an anisotropic expansion of the unit cell. Superconductivity was restored by post-exposure annealing. The upper critical field, Hc2_{c2}(T=0), approximately scales with Tc_c starting with an undamaged Tc_c near 37 K and Hc2_{c2}(T=0) near 32 T. Up to an annealing temperature of 400 o^ oC the recovery of Tc_c tends to coincide with a decrease in the normal state resistivity and a systematic recovery of the lattice parameters. Above 400 o^ oC a decrease in order along the c- direction coincides with an increase in resistivity, but no apparent change in the evolution of Tc_c and Hc2_{c2}. To first order, it appears that carbon doping and neutron damaging effect the superconducting properties of MgB2_2 independently

    Suppression of Superconducting Critical Current Density by Small Flux Jumps in MgB2MgB_2 Thin Films

    Full text link
    By doing magnetization measurements during magnetic field sweeps on thin films of the new superconductor MgB2MgB_2, it is found that in a low temperature and low field region small flux jumps are taking place. This effect strongly suppresses the central magnetization peak leading to reduced nominal superconducting critical current density at low temperatures. A borderline for this effect to occur is determined on the field-temperature (H-T) phase diagram. It is suggested that the small size of the flux jumps in films is due to the higher density of small defects and the relatively easy thermal diffusion in thin films in comparison with bulk samples.Comment: 7 figures Phys. Rev. B accepted scheduled issue: 01 Feb 200

    Scanning Tunneling Spectroscopy in MgB2

    Full text link
    We present scanning tunneling microscopy measurements of the surface of superconducting MgB2 with a critical temperature of 39K. In zero magnetic field the conductance spectra can be analyzed in terms of the standard BCS theory with a smearing parameter Gamma. The value of the superconducting gap is 5.2 meV at 4.2 K, with no experimentally significant variation across the surface of the sample. The temperature dependence of the gap follows the BCS form, fully consistent with phonon-mediated superconductivity in this novel superconductor. The application of a magnetic field induces strong pair-breaking as seen in the conductance spectra in fields up to 6 T.Comment: 4 pages, 4 figure

    The Average Kinetic Energy of the Superconducting State

    Full text link
    Isothermal magnetization curves are plotted as the magnetization times the magnetic induction, 4πM⋅B4 \pi M \cdot B, versus the applied field, H. We show here that this new curve is the average kinetic energy of the superconducting state versus the applied field, for type-II superconductors with a high Ginzburg-Landau parameter κ\kappa. The maximum of 4πM⋅B4 \pi M \cdot B occurs at a field, H∗H^{*}, directly related to the upper critical field, Hc2H_{c2}, suggesting that Hc2(T)H_{c2}(T) may be extracted from such plots even in cases when it is too high for direct measurement. We obtain these plots both theoretically, from the Ginzburg-Landau theory, and experimentally, using a Niobium sample with Tc=8.5KT_c = 8.5 K, and compare them.Comment: 11 pages, 9 postscript figure

    Order parameter of MgB_2: a fully gapped superconductor

    Full text link
    We have measured the low-temperature specific heat C(T) for polycrystalline MgB_2 prepared by high pressure synthesis. C(T) below 10 K vanishes exponentially, which unambiguously indicates a fully opened superconducting energy gap. However, this gap is found to be too small to account for Tc of MgB_2. Together with the small specific heat jump DeltaC/gamma_nTc=1.13, scenarios like anisotropic s-wave or multi-component order parameter are called for. The magnetic field dependence of gamma(H) is neither linear for a fully gapped s-wave superconductor nor H^1/2 for nodal order parameter. It seems that this intriguing behavior of gamma(H) is associated with the intrinsic electronic properties other than flux pinning.Comment: 7 pages, 5 figures; revised text and figures; references updated, Phys. Rev. Lett., in pres

    High current-carrying capability in c-axis-oriented superconducting MgB2 thin films

    Full text link
    In high-quality c-axis-oriented MgB2 thin films, we observed high critical current densities (Jc) of 16 MA/cm^2 at 15 K under self fields comparable to those of cuprate high-temperature superconductors. The extrapolated value of Jc at 5 K was estimated to be 40 MA/cm^2. For a magnetic field of 5 T, a Jc of 0.1 MA/cm^2 was detected at 15 K, suggesting that this compound would be a very promising candidate for practical applications at high temperature and lower power consumption. The vortex-glass phase is considered to be a possible explanation for the observed high current-carrying capability.Comment: 3 pages and 4 figures, to be published in Physical Review Letter
    • …
    corecore