952 research outputs found

    An Acoustic Technique for the Noninvasive in-Situ Measurement of Crystal Size and Solution Concentration

    Get PDF
    We demonstrated the use of acoustic measurements for tracking potassium dihydrogen phosphate (KDP) crystal growth. Both KDP solution concentration and KDP crystal size can be found by using information derived from acoustic wave propagation in the solution. Acoustic measurements show good correlation to conductivity measurements for KDP solution concentration

    Magnetohydrodynamic scaling: From astrophysics to the laboratory

    Full text link
    During the last few years, considerable progress has been made in simulating astrophysical phenomena in laboratory experiments with high-power lasers. Astrophysical phenomena that have drawn particular interest include supernovae explosions; young supernova remnants; galactic jets; the formation of fine structures in late supernovae remnants by instabilities; and the ablation-driven evolution of molecular clouds. A question may arise as to what extent the laser experiments, which deal with targets of a spatial scale of ∼100 μm and occur at a time scale of a few nanoseconds, can reproduce phenomena occurring at spatial scales of a million or more kilometers and time scales from hours to many years. Quite remarkably, in a number of cases there exists a broad hydrodynamic similarity (sometimes called the “Euler similarity”) that allows a direct scaling of laboratory results to astrophysical phenomena. A discussion is presented of the details of the Euler similarity related to the presence of shocks and to a special case of a strong drive. Constraints stemming from the possible development of small-scale turbulence are analyzed. The case of a gas with a spatially varying polytropic index is discussed. A possibility of scaled simulations of ablation front dynamics is one more topic covered in this paper. It is shown that, with some additional constraints, a simple similarity exists. © 2001 American Institute of Physics.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/71174/2/PHPAEN-8-5-1804-1.pd

    DC Link Stabilized Field Oriented Control of Electric Propulsion Systems

    Get PDF
    Induction motor based electric propulsion systems can be used in a wide variety of applications including locomotives, hybrid electric vehicles, and ships. Field oriented control of these drives is attractive since it allows the torque to be tightly and nearly instantaneously controlled. However, such systems can be prone to negative impedance instability of the DC link. This paper examines this type of instability and sets forth a readily implemented albeit nonlinear control strategy to mitigate this potential problem

    Modified Bell-Plesset Effect with Compressibility: Application to Double-Shell Ignition Target Designs

    Get PDF
    The effect of spherical convergence on the fluid stability of collapsing and expanding bubbles was originally treated by Bell [Los Alamos Scientific Laboratory Report No. LA-1321 (1951)] and Plesset [J. Appl. Phys. 25, 96 (1954)]. The additional effect of fluid compressibility was also considered by Bell but was limited to the case of nonzero density on only one side of a fluid interface. A more general extension is developed which considers distinct time-dependent uniform densities on both sides of an interface in a spherically converging geometry. A modified form of the velocity potential is used that avoids an unphysical divergence at the origin [Goncharov et al., Phys. Plasmas 7, 5118 (2000); Lin et al., Phys. Fluids 14, 2925 (2002)]. Two consequences of this approach are that an instability proposed by Plesset for an expanding bubble in the limit of large interior density is now absent and application to inertial confinement fusion studies of stability becomes feasible. The model is applied to a proposed ignition double-shell target design [Amendt et al., Phys. Plasmas 9, 2221 (2002)] for the National Ignition Facility [Paisner et al., Laser Focus World 30, 75 (1994)] for studying the stability of the inner surface of an imploding high-Z inner shell. Application of the Haan [Phys. Rev. A 39, 5812 (1989)] saturation criterion suggests that ignition is possible

    The time scale for the transition to turbulence in a high Reynolds number, accelerated flow

    Full text link
    An experiment is described in which an interface between materials of different density is subjected to an acceleration history consisting of a strong shock followed by a period of deceleration. The resulting flow at this interface, initiated by the deposition of strong laser radiation into the initially well characterized solid materials, is unstable to both the Richtmyer–Meshkov (RM) and Rayleigh–Taylor (RT) instabilities. These experiments are of importance in their ability to access a difficult experimental regime characterized by very high energy density (high temperature and pressure) as well as large Reynolds number and Mach number. Such conditions are of interest, for example, in the study of the RM/RT induced mixing that occurs during the explosion of a core-collapse supernova. Under these experimental conditions, the flow is in the plasma state and given enough time will transition to turbulence. By analysis of the experimental data and a corresponding one-dimensional numerical simulation of the experiment, it is shown that the Reynolds number is sufficiently large (Re>105)(Re>105) to support a turbulent flow. An estimate of three key turbulence length scales (the Taylor and Kolmogorov microscales and a viscous diffusion scale), however, shows that the temporal duration of the present flow is insufficient to allow for the development of a turbulent inertial subrange. A methodology is described for estimating the time required under these conditions for the development of a fully turbulent flow. © 2003 American Institute of Physics.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/70243/2/PHPAEN-10-3-614-1.pd

    3. Launching the New Enterprise

    Get PDF
    As the academic year of 1945-46 approached, the intensity of activity in preparation for actually opening the school in the fall term became overwhelming. Incredible though it may seem, Ives and Day were able in a period of a few weeks to assemble the nucleus of a faculty, several of whom formed a continuing source of counsel and advice both during the school’s formative years and thereafter. Includes: The First Dean and the School’s Dedication; A Participant’s View of the Early Years; Ives Moves On; Several Views of Martin P. Catherwood; The Founders
    corecore