4,369 research outputs found
Muscle B mode ultrasound and shear-wave elastography in idiopathic inflammatory myopathies (SWIM): criterion validation against MRI and muscle biopsy findings in an incident patient cohort
Background
B mode ultrasound (US) and shear wave elastography (SWE) are easily accessible imaging tools for idiopathic inflammatory myopathies (IIM) but require further validation against standard diagnostic procedures such as MRI and muscle biopsy.
Methods
In this prospective cross-sectional study we compared US findings to MRI and muscle biopsy findings in a group of 18 patients (11 F, 7 M) with active IIM (dermatomyositis 6, necrotising autoimmune myopathy 7, inclusion body myositis 4, overlap myositis 1) who had one or both procedures on the same muscle. US domains (echogenicity, fascial thickness, muscle bulk, shear wave speed and power doppler) in the deltoid and vastus lateralis were compared to MRI domains (muscle oedema, fatty infiltration/atrophy) and muscle biopsy findings (lymphocytic inflammation, myonecrosis, atrophy and fibro-fatty infiltration). A composite index score (1–4) was also used as an arbitrary indicator of overall muscle pathology in biopsies.
Results
Increased echogenicity correlated with the presence of fatty infiltration/atrophy on MRI (p = 0.047) in the vastus lateralis, and showed a non-significant association with muscle inflammation, myonecrosis, fibrosis and fatty infiltration/atrophy (p > 0.333) Severe echogenicity also had a non-significant association with higher composite biopsy index score in the vastus lateralis (p = 0.380). SWS and US measures of fascial thickness and muscle bulk showed poor discrimination in differentiating between pathologies on MRI or muscle biopsy. Power Doppler measures of vascularity correlated poorly with the presence of oedema on MRI, or with inflammation or fatty infiltration on biopsy. Overall, US was sensitive in detecting the presence of muscle pathology shown on MRI (67–100%) but showed poorer specificity (13–100%). Increased echogenicity showed good sensitivity when detecting muscle pathology (100%) but lacked specificity in differentiating muscle pathologies (0%). Most study participants rated US as the preferred imaging modality.
Conclusions
Our findings show that US, in particular muscle echogenicity, has a high sensitivity, but low specificity, for detecting muscle pathology in IIM. Traditional visual grading scores are not IIM-specific and require further modification and validation. Future studies should continue to focus on developing a feasible scoring system, which is reliable and allows translation to clinical practice
Correction to: Muscle B mode ultrasound and shear-wave elastography in idiopathic inflammatory myopathies (SWIM): criterion validation against MRI and muscle biopsy findings in an incident patient cohort
Correction to: BMC Rheumatology (2022) 6:47. https://doi.org/10.1186/s41927-022-00276-
Attacking Group Protocols by Refuting Incorrect Inductive Conjectures
Automated tools for finding attacks on flawed security protocols often fail to deal adequately with group protocols. This is because the abstractions made to improve performance on fixed 2 or 3 party protocols either preclude the modelling of group protocols all together, or permit modelling only in a fixed scenario, which can prevent attacks from being discovered. This paper describes Coral, a tool for finding counterexamples to incorrect inductive conjectures, which we have used to model protocols for both group key agreement and group key management, without any restrictions on the scenario. We will show how we used Coral to discover 6 previously unknown attacks on 3 group protocols
Artemis Curation: Preparing for Sample Return from the Lunar South Pole
Space Policy Directive-1 mandates that the United States will lead the return of humans to the Moon for long-term exploration and utilization, followed by human missions to Mars and other destinations. In addition, the Vice President stated that It is the stated policy of this administration and the United States of America to return American astronauts to the Moon within the next five years, that is, by 2024. These efforts, under the umbrella of the recently formed Artemis Program, include such historic goals as the flight of the first woman to the Moon and the exploration of the lunar south-polar region. Among the top priorities of the Artemis Program is the return of a suite of geologic samples, providing new and significant opportunities for progressing lunar science and human exploration. In particular, successful sample return is necessary for understanding the history of volatiles in the Solar System and the evolution of the Earth-Moon system, fully constraining the hazards of the lunar polar environment for astronauts, and providing the necessary data for constraining the abundance and distribution of resources for in-situ resource utilization (ISRU). Here we summarize the ef-forts of the Astromaterials Acquisition and Curation Office (hereafter referred to as the Curation Office) to ensure the success of Artemis sample return (per NASA Policy Directive (NPD) 7100.10E)
Relativistic Chasles' theorem and the conjugacy classes of the inhomogeneous Lorentz group
This work is devoted to the relativistic generalization of Chasles' theorem,
namely to the proof that every proper orthochronous isometry of Minkowski
spacetime, which sends some point to its chronological future, is generated
through the frame displacement of an observer which moves with constant
acceleration and constant angular velocity. The acceleration and angular
velocity can be chosen either aligned or perpendicular, and in the latter case
the angular velocity can be chosen equal or smaller than than the acceleration.
We start reviewing the classical Euler's and Chasles' theorems both in the Lie
algebra and group versions. We recall the relativistic generalization of
Euler's theorem and observe that every (infinitesimal) transformation can be
recovered from information of algebraic and geometric type, the former being
identified with the conjugacy class and the latter with some additional
geometric ingredients (the screw axis in the usual non-relativistic version).
Then the proper orthochronous inhomogeneous Lorentz Lie group is studied in
detail. We prove its exponentiality and identify a causal semigroup and the
corresponding Lie cone. Through the identification of new Ad-invariants we
classify the conjugacy classes, and show that those which admit a causal
representative have special physical significance. These results imply a
classification of the inequivalent Killing vector fields of Minkowski spacetime
which we express through simple representatives. Finally, we arrive at the
mentioned generalization of Chasles' theorem.Comment: Latex2e, 49 pages. v2: few typos correcte
The effects of an intronic polymorphism in TOMM40 and APOE genotypes in sporadic inclusion body myositis.
A previous study showed that, in carriers of the apolipoprotein E (APOE) genotype ε3/ε3 or ε3/ε4, the presence of a very long (VL) polyT repeat allele in "translocase of outer mitochondrial membrane 40" (TOMM40) was less frequent in patients with sporadic inclusion body myositis (sIBM) compared with controls and associated with a later age of sIBM symptom onset, suggesting a protective effect of this haplotype. To further investigate the influence of these genetic factors in sIBM, we analyzed a large sIBM cohort of 158 cases as part of an International sIBM Genetics Study. No significant association was found between APOE or TOMM40 genotypes and the risk of developing sIBM. We found that the presence of at least 1 VL polyT repeat allele in TOMM40 was significantly associated with about 4 years later onset of sIBM symptoms. The age of onset was delayed by 5 years when the patients were also carriers of the APOE genotype ε3/ε3. In addition, males were likely to have a later age of onset than females. Therefore, the TOMM40 VL polyT repeat, although not influencing disease susceptibility, has a disease-modifying effect on sIBM, which can be enhanced by the APOE genotype ε3/ε3
The Speed of Fronts of the Reaction Diffusion Equation
We study the speed of propagation of fronts for the scalar reaction-diffusion
equation \, with . We give a new integral
variational principle for the speed of the fronts joining the state to
. No assumptions are made on the reaction term other than those
needed to guarantee the existence of the front. Therefore our results apply to
the classical case in , to the bistable case and to cases in
which has more than one internal zero in .Comment: 7 pages Revtex, 1 figure not include
A phenomenological approach to the simulation of metabolism and proliferation dynamics of large tumour cell populations
A major goal of modern computational biology is to simulate the collective
behaviour of large cell populations starting from the intricate web of
molecular interactions occurring at the microscopic level. In this paper we
describe a simplified model of cell metabolism, growth and proliferation,
suitable for inclusion in a multicell simulator, now under development
(Chignola R and Milotti E 2004 Physica A 338 261-6). Nutrients regulate the
proliferation dynamics of tumor cells which adapt their behaviour to respond to
changes in the biochemical composition of the environment. This modeling of
nutrient metabolism and cell cycle at a mesoscopic scale level leads to a
continuous flow of information between the two disparate spatiotemporal scales
of molecular and cellular dynamics that can be simulated with modern computers
and tested experimentally.Comment: 58 pages, 7 figures, 3 tables, pdf onl
- …