1,287 research outputs found

    Pressure-tuned First-order Phase Transition and Accompanying Resistivity Anomaly in CeZn_{1-\delta}Sb_{2}

    Get PDF
    The Kondo lattice system CeZn_{0.66}Sb_{2} is studied by the electrical resistivity and ac magnetic susceptibility measurements at several pressures. At P=0 kbar, ferromagnetic and antiferromagnetic transitions appear at 3.6 and 0.8 K, respectively. The electrical resistivity at T_N dramatically changes from the Fisher-Langer type (ferromagnetic like) to the Suzaki-Mori type near 17 kbar, i.e., from a positive divergence to a negative divergence in the temperature derivative of the resistivity. The pressure-induced SM type anomaly, which shows thermal hysteresis, is easily suppressed by small magnetic field (1.9 kOe for 19.8 kbar), indicating a weakly first-order nature of the transition. By subtracting a low-pressure data set, we directly compare the resistivity anomaly with the SM theory without any assumption on backgrounds, where the negative divergence in d\rho/dT is ascribed to enhanced critical fluctuations in the presence of superzone gaps.Comment: 5 pages, 4 figures; journal-ref adde

    Spin dynamical properties and orbital states of the layered perovskite La_2-2x_Sr_1+2x_Mn_2_O_7 (0.3 <= x < 0.5)

    Get PDF
    Low-temperature spin dynamics of the double-layered perovskite La_2-2x_Sr_1+2x_Mn_2_O_7 (LSMO327) was systematically studied in a wide hole concentration range (0.3 <= x < 0.5). The spin-wave dispersion, which is almost perfectly 2D, has two branches due to a coupling between layers within a double-layer. Each branch exhibits a characteristic intensity oscillation along the out-of-plane direction. We found that the in-plane spin stiffness constant and the gap between the two branches strongly depend on x. By fitting to calculated dispersion relations and cross sections assuming Heisenberg models, we have obtained the in-plane (J_para), intra-bilayer (J_perp) and inter-bilayer (J') exchange interactions at each x. At x=0.30, J_para=-4meV and J_perp=-5meV, namely almost isotropic and ferromagnetic. Upon increasing x, J_perp rapidly approaches zero while |J_para| increases slightly, indicating an enhancement of the planar magnetic anisotropy. At x=0.48, J_para reaches -9meV, while J_perp turns to +1meV indicating an antiferromagnetic interaction. Such a drastic change of the exchange interactions can be ascribed to the change of the relative stability of the d_x^2-y^2 and d_3z^2-r^2 orbital states upon doping. However, a simple linear combination of the two states results in an orbital state with an orthorhombic symmetry, which is inconsistent with the tetragonal symmetry of the crystal structure. We thus propose that an ``orbital liquid'' state realizes in LSMO327, where the charge distribution symmetry is kept tetragonal around each Mn site.Comment: 10 pages including 7 figure

    Oxygen Phonon Branches in Detwinned YBa2Cu3O7

    Full text link
    We report results of inelastic neutron scattering measurements of phonon dispersions on a detwinned sample of YBaCu3O7 and compare them with model calculations. Plane oxygen bond stretching phonon branches disperse steeply downwards from the zone center in both the a and the b direction indicating a strong electron-phonon coupling. Half way to the zone boundary, the phonon peaks become ill-defined but we see no need to invoke unit cell doubling or charge stripe formation: lattice dynamical shell model calculations predict such behavior as a result of branch anticrossings. There were no observable superconductivity-related temperature effects on selected plane oxygen bond stretching modes measured on a twinned sample.Comment: 5 pages, 3 figures, To appear in Journal of Low Temperature Physics (Proceedings of MOS2002; Revised version (1) with many changes throughout the tex
    corecore