69 research outputs found

    1.3-μm InAs Quantum Dot Lasers with P-type modulation and direct N-type co-doping

    Get PDF
    O-band quantum dot lasers with co-doping reduce threshold current density relative to the undoped case, for 1mm long uncoated lasers from 245Acm-2 to 132Acm-2 at 27°C and 731Acm-2 to 312Acm-2 at 97°C. Improvements are also significant compared to lasers employing any one doping strategy

    Co-doped 1.3μm InAs Quantum Dot Lasers with high gain and low threshold current

    Get PDF
    The mechanism by which co-doping reduces threshold current in O-band Quantum dot lasers is examined, with n-type direct doping of the dots reducing threshold current and p-type modulation doping improving the temperature dependence of threshold current density, relative to undoped samples

    Monolithic InAs QDs based active-passive integration for photonic integrated circuits

    Get PDF
    We demonstrated 20 nm relative blue shifted III-V passive waveguides monolithically integrated with InAs QDs active laser diode emitting at 1290 nm through selective area proton implantation and post-annealing method. This work is promising for low-loss monolithic Photonic Integrated Circuits

    Emergency department spirometric volume and base deficit delineate risk for torso injury in stable patients

    Get PDF
    BACKGROUND: We sought to determine torso injury rates and sensitivities associated with fluid-positive abdominal ultrasound, metabolic acidosis (increased base deficit and lactate), and impaired pulmonary physiology (decreased spirometric volume and PaO(2)/FiO(2)). METHODS: Level I trauma center prospective pilot and post-pilot study (2000–2001) of stable patients. Increased base deficit was < 0.0 in ethanol-negative and ≤ -3.0 in ethanol-positive patients. Increased lactate was > 2.5 mmol/L in ethanol-negative and ≥ 3.0 mmol/L in ethanol-positive patients. Decreased PaO(2)/FiO(2 )was < 350 and decreased spirometric volume was < 1.8 L. RESULTS: Of 215 patients, 66 (30.7%) had a torso injury (abdominal/pelvic injury n = 35 and/or thoracic injury n = 43). Glasgow Coma Scale score was 14.8 ± 0.5 (13–15). Torso injury rates and sensitivities were: abdominal ultrasound negative and normal base deficit, lactate, PaO(2)/FiO(2), and spirometric volume – 0.0% & 0.0%; normal base deficit and normal spirometric volume – 4.2% & 4.5%; chest/abdominal soft tissue injury – 37.8% & 47.0%; increased lactate – 39.7% & 47.0%; increased base deficit – 41.3% & 75.8%; increased base deficit and/or decreased spirometric volume – 43.8% & 95.5%; decreased PaO(2)/FiO(2 )– 48.9% & 33.3%; positive abdominal ultrasound – 62.5% & 7.6%; decreased spirometric volume – 73.4% & 71.2%; increased base deficit and decreased spirometric volume – 82.9% & 51.5%. CONCLUSIONS: Trauma patients with normal base deficit and spirometric volume are unlikely to have a torso injury. Patients with increased base deficit or lactate, decreased spirometric volume, decreased PaO(2)/FiO(2), or positive FAST have substantial risk for torso injury. Increased base deficit and/or decreased spirometric volume are highly sensitive for torso injury. Base deficit and spirometric volume values are readily available and increase or decrease the suspicion for torso injury

    An Account of Prairie Falcons Bred in Captivity-1970

    No full text
    • …
    corecore