3 research outputs found

    Erratum: Searches for continuous gravitational waves from nine young supernova remnants (2015, ApJ, 813, 39)

    Get PDF
    We describe directed searches for continuous gravitational waves in data from the sixth LIGO science data run. The targets were nine young supernova remnants not associated with pulsars; eight of the remnants are associated with non-pulsing suspected neutron stars. One target's parameters are uncertain enough to warrant two searches, for a total of ten. Each search covered a broad band of frequencies and first and second frequency derivatives for a fixed sky direction. The searches coherently integrated data from the two LIGO interferometers over time spans from 5.3-25.3 days using the matched-filtering F-statistic. We found no credible gravitational-wave signals. We set 95% confidence upper limits as strong (low) as 4×10254\times10^{-25} on intrinsic strain, 2×1072\times10^{-7} on fiducial ellipticity, and 4×1054\times10^{-5} on r-mode amplitude. These beat the indirect limits from energy conservation and are within the range of theoretical predictions for neutron-star ellipticities and r-mode amplitudes

    High-energy neutrino follow-up search of gravitational wave event GW150914 with ANTARES and IceCube

    Get PDF
    We present the high-energy-neutrino follow-up observations of the first gravitational wave transient GW150914 observed by the Advanced LIGO detectors on September 14, 2015. We search for coincident neutrino candidates within the data recorded by the IceCube and Antares neutrino detectors. A possible joint detection could be used in targeted electromagnetic follow-up observations, given the significantly better angular resolution of neutrino events compared to gravitational waves. We find no neutrino candidates in both temporal and spatial coincidence with the gravitational wave event. Within ±500  s of the gravitational wave event, the number of neutrino candidates detected by IceCube and Antares were three and zero, respectively. This is consistent with the expected atmospheric background, and none of the neutrino candidates were directionally coincident with GW150914. We use this nondetection to constrain neutrino emission from the gravitational-wave event.by Anand Sengupta et al
    corecore