4 research outputs found

    Mechanisms of escape phenomenon of spinal cord and brainstem in human rabies

    Get PDF
    BACKGROUND: Rabies virus preferentially involves brainstem, thalamus and spinal cord in human furious and paralytic rabies beginning in the early stage of illness. Nevertheless, rabies patient remains alert until the pre-terminal phase. Weakness of extremities develops only when furious rabies patient becomes comatose; whereas peripheral nerve dysfunction is responsible for weakness in paralytic rabies. METHODS: Evidence of apoptosis and mitochondrial outer membrane permeabilization in brain and spinal cord of 10 rabies patients was examined and these findings were correlated with the presence of rabies virus antigen. RESULTS: Although apoptosis was evident in most of the regions, cytochrome c leakage was relatively absent in spinal cord of nearly all patients despite the abundant presence of rabies virus antigen. Such finding was also noted in brainstem of 5 patients. CONCLUSION: Cell death in human rabies may be delayed in spinal cord and the reticular activating system, such as brainstem, thus explaining absence of weakness due to spinal cord dysfunction and preservation of consciousness

    Modification of membrane currents in mouse neuroblastoma cells following infection with rabies virus

    Full text link
    1. The effect on membrane currents of infection of mouse neuroblastoma NA cells with rabies virus was studied by using the whole-cell patch clamp technique. 2. Three types of membrane currents, namely voltage-dependent Na(+) current (I(Na)), delayed rectifier K(+) current (I(K-DR)) and inward rectifier K(+) current (I(K-IR)) were elicited in uninfected cells. 3. In cells 3 days after infection with the virus, no detectable change was observed in morphology and membrane capacitance, but I(Na) and I(K-IR) were significantly decreased in amplitude without any appreciable difference in the time course of current activation and inactivation. The voltage-dependence of I(Na) activation was significantly shifted in the positive direction along the voltage axis with a decreased slope. I(K-DR) remained almost unaltered after the viral infection. 4. The resting membrane potential, measured with a physiological K(+) gradient across the cell membrane, was decreased (depolarized) after the viral infection. The depolarization was associated with the decreased amplitude of I(K-IR). 5. These results suggest that infection of mouse neuroblastoma NA cells with rabies virus causes reduction of functional expression of ion channels responsible for I(Na) and I(K-IR), and provide evidence for possible involvement of the change in membrane properties in the pathogenesis of rabies disease
    corecore