22,017 research outputs found

    Constraints on spin-dependent parton distributions at large x from global QCD analysis

    Full text link
    We investigate the behavior of spin-dependent parton distribution functions (PDFs) at large parton momentum fractions x in the context of global QCD analysis. We explore the constraints from existing deep-inelastic scattering data, and from theoretical expectations for the leading x -> 1 behavior based on hard gluon exchange in perturbative QCD. Systematic uncertainties from the dependence of the PDFs on the choice of parametrization are studied by considering functional forms motivated by orbital angular momentum arguments. Finally, we quantify the reduction in the PDF uncertainties that may be expected from future high-x data from Jefferson Lab at 12 GeV.Comment: 14 pages, 3 figures, 1 tabl

    The Effects of Acute Stress Exposure on Neural Correlates of Pavlovian Conditioning with Monetary Gains and Losses

    Get PDF
    Pavlovian conditioning involves the association of an inherently neutral stimulus with an appetitive or aversive outcome, such that the neutral stimulus itself acquires reinforcing properties. Across species, this type of learning has been shown to involve subcortical brain regions such as the striatum and the amygdala. It is less clear, however, how the neural circuitry involved in the acquisition of Pavlovian contingencies in humans, particularly in the striatum, is affected by acute stress. In the current study, we investigate the effect of acute stress exposure on Pavlovian conditioning using monetary reinforcers. Participants underwent a partial reinforcement conditioning procedure in which neutral stimuli were paired with high and low magnitude monetary gains and losses. A between-subjects design was used, such that half of the participants were exposed to cold stress while the remaining participants were exposed to a no stress control procedure. Cortisol measurements and subjective ratings were used as measures of stress. We observed an interaction between stress, valence, and magnitude in the ventral striatum, with the peak in the putamen. More specifically, the stress group exhibited an increased sensitivity to magnitude in the gain domain. This effect was driven by those participants who experienced a larger increase in circulating cortisol levels in response to the stress manipulation. Taken together, these results suggest that acute stress can lead to individual differences in circulating cortisol levels which influence the striatum during Pavlovian conditioning with monetary reinforcers

    Optimal Resources for Topological 2D Stabilizer Codes: Comparative Study

    Full text link
    We study the resources needed to construct topological 2D stabilizer codes as a way to estimate in part their efficiency and this leads us to perform a comparative study of surface codes and color codes. This study clarifies the similarities and differences between these two types of stabilizer codes. We compute the error correcting rate C:=n/d2C:=n/d^2 for surface codes CsC_s and color codes CcC_c in several instances. On the torus, typical values are Cs=2C_s=2 and Cc=3/2C_c=3/2, but we find that the optimal values are Cs=1C_s=1 and Cc=9/8C_c=9/8. For planar codes, a typical value is Cs=2C_s=2, while we find that the optimal values are Cs=1C_s=1 and Cc=3/4C_c=3/4. In general, a color code encodes twice as much logical qubits as a surface code does.Comment: revtex, 6 pages, 7 figure

    Entanglement Distillation Protocols and Number Theory

    Full text link
    We show that the analysis of entanglement distillation protocols for qudits of arbitrary dimension DD benefits from applying basic concepts from number theory, since the set \zdn associated to Bell diagonal states is a module rather than a vector space. We find that a partition of \zdn into divisor classes characterizes the invariant properties of mixed Bell diagonal states under local permutations. We construct a very general class of recursion protocols by means of unitary operations implementing these local permutations. We study these distillation protocols depending on whether we use twirling operations in the intermediate steps or not, and we study them both analitically and numerically with Monte Carlo methods. In the absence of twirling operations, we construct extensions of the quantum privacy algorithms valid for secure communications with qudits of any dimension DD. When DD is a prime number, we show that distillation protocols are optimal both qualitatively and quantitatively.Comment: REVTEX4 file, 7 color figures, 2 table

    Topological Computation without Braiding

    Get PDF
    We show that universal quantum computation can be performed within the ground state of a topologically ordered quantum system, which is a naturally protected quantum memory. In particular, we show how this can be achieved using brane-net condensates in 3-colexes. The universal set of gates is implemented without selective addressing of physical qubits and, being fully topologically protected, it does not rely on quasiparticle excitations or their braiding.Comment: revtex4, 4 pages, 4 figure
    • …
    corecore