29,038 research outputs found
Can the Bump be Observed in the Early Afterglow of GRBS with X-Ray Line Emission Features?
Extremely powerful emission lines are observed in the X-ray afterglow of
several GRBs. The energy contained in the illuminating continuum which is
responsible for the line production exceeds 10 erg, much higher than
that of the collimated GRBs. It constrains the models which explain the
production of X-ray emission lines. In this paper, We argue that this energy
can come from a continuous postburst outflow. Focusing on a central engine of
highly magnetized millisecond pulsar or magnetar we find that afterglow can be
affected by the illuminating continuum, and therefore a distinct achromatic
bump may be observed in the early afterglow lightcurves. With the luminosity of
the continuous outflow which produces the line emission, we define the upper
limit of the time when the bump feature appears. We argue that the reason why
the achromatic bumps have not been detected so far is that the bumps should
appear at the time too early to be observed.Comment: 13 pags, 2 tables, appear in v603 n1 pt1 ApJ March 1, 2004 issu
Observation of Magnetic Moments in the Superconducting State of YBaCuO
Neutron Scattering measurements for YBaCuO have identified
small magnetic moments that increase in strength as the temperature is reduced
below and further increase below . An analysis of the data shows
the moments are antiferromagnetic between the Cu-O planes with a correlation
length of longer than 195 \AA in the - plane and about 35 \AA along the
c-axis. The origin of the moments is unknown, and their properties are
discusssed both in terms of Cu spin magnetism and orbital bond currents.Comment: 9 pages, and 4 figure
Quantifying N response and N use efficiency in Rice-Wheat (RW) cropping systems under different water management
About 0·10 of the food supply in China is produced in rice¿wheat (RW) cropping systems. In recent decades, nitrogen (N) input associated with intensification has increased much more rapidly than N use in these systems. The resulting nitrogen surplus increases the risk of environmental pollution as well as production costs. Limited information on N dynamics in RW systems in relation to water management hampers development of management practices leading to more efficient use of nitrogen and water. The present work studied the effects of N and water management on yields of rice and wheat, and nitrogen use efficiencies (NUEs) in RW systems. A RW field experiment with nitrogen rates from 0 to 300 kg N/ha with continuously flooded and intermittently irrigated rice crops was carried out at the Jiangpu experimental station of Nanjing Agricultural University of China from 2002 to 2004 to identify improved nitrogen management practices in terms of land productivity and NUE. Nitrogen uptake by rice and wheat increased with increasing N rates, while agronomic NUE (kg grain/kg N applied) declined at rates exceeding 150 kg N/ha. The highest combined grain yields of rice and wheat were obtained at 150 and 300 kg N/ha per season in rice and wheat, respectively. Carry-over of residual N from rice to the subsequent wheat crop was limited, consistent with low soil nitrate after rice harvest. Total soil N hardly changed during the experiment, while soil nitrate was much lower after wheat than after rice harvest. Water management did not affect yield and N uptake by rice, but apparent N recovery was higher under intermittent irrigation (II). In one season, II management in rice resulted in higher yield and N uptake in the subsequent wheat season. Uptake of indigenous soil N was much higher in rice than in wheat, while in rice it was much higher than values reported in the literature, which may have consequences for nitrogen fertilizer recommendations based on indigenous N suppl
Analytical and numerical studies of central galactic outflows powered by tidal disruption events -- a model for the Fermi bubbles?
Capture and tidal disruption of stars by the supermassive black hole in the
Galactic center (GC) should occur regularly. The energy released and dissipated
by this processes will affect both the ambient environment of the GC and the
Galactic halo. A single star of super-Eddington eruption generates a subsonic
out ow with an energy release of more than erg, which still is not
high enough to push shock heated gas into the halo. Only routine tidal
disruption of stars near the GC can provide enough cumulative energy to form
and maintain large scale structures like the Fermi Bubbles. The average rate of
disruption events is expected to be ~ yr, providing
the average power of energy release from the GC into the halo of dW/dt ~
3*10 erg/s, which is needed to support the Fermi Bubbles. The GC black
hole is surrounded by molecular clouds in the disk, but their overall mass and
filling factor is too low to stall the shocks from tidal disruption events
significantly. The de facto continuous energy injection on timescales of Myr
will lead to the propagation of strong shocks in a density stratified Galactic
halo and thus create elongated bubble-like features, which are symmetric to the
Galactic midplane.Comment: 11 pages, 5 figures. The title and abstract have been changed.
Accepted by Astrophysical Journa
Evaporation of a black hole off of a tense brane
We calculate the gray-body factors for scalar, vector and graviton fields in
the background of an exact black hole localized on a tensional 3-brane in a
world with two large extra dimensions. Finite brane tension modifies the
standard results for the case with of a black hole on a brane with negligible
tension. For a black hole of a fixed mass, the power carried away into the bulk
diminishes as the tension increases, because the effective Planck constant, and
therefore entropy of a fixed mass black hole, increase. In this limit, the
semiclassical description of black hole decay becomes more reliable.Comment: a few typos corrected, accepted for publication in PR
Hyperaccretion Disks around Neutron Stars
(Abridged) We here study the structure of a hyperaccretion disk around a
neutron star. We consider a steady-state hyperaccretion disk around a neutron
star, and as a reasonable approximation, divide the disk into two regions,
which are called inner and outer disks. The outer disk is similar to that of a
black hole and the inner disk has a self-similar structure. In order to study
physical properties of the entire disk clearly, we first adopt a simple model,
in which some microphysical processes in the disk are simplified, following
Popham et al. and Narayan et al. Based on these simplifications, we
analytically and numerically investigate the size of the inner disk, the
efficiency of neutrino cooling, and the radial distributions of the disk
density, temperature and pressure. We see that, compared with the black-hole
disk, the neutron star disk can cool more efficiently and produce a much higher
neutrino luminosity. Finally, we consider an elaborate model with more physical
considerations about the thermodynamics and microphysics in the neutron star
disk (as recently developed in studying the neutrino-cooled disk of a black
hole), and compare this elaborate model with our simple model. We find that
most of the results from these two models are basically consistent with each
other.Comment: 44 pages, 10 figures, improved version following the referees'
comments, main conclusions unchanged, accepted for publication in Ap
- …