260 research outputs found
A multicenter study on Leigh syndrome: Disease course and predictors of survival
Background: Leigh syndrome is a progressive neurodegenerative disorder, associated with primary or secondary dysfunction of the mitochondrial oxidative phosphorylation. Despite the fact that Leigh syndrome is the most common phenotype of mitochondrial disorders in children, longitudinal natural history data is missing. This study was undertaken to assess the phenotypic and genotypic spectrum of patients with Leigh syndrome, characterise the clinical course and identify predictors of survival in a large cohort of patients. Methods. This is a retrospective study of patients with Leigh syndrome that have been followed at eight centers specialising in mitochondrial diseases in Europe; Gothenburg, Rotterdam, Helsinki, Copenhagen, Stockholm, Brussels, Bergen and Oulu. Results: A total of 130 patients were included (78 males; 52 females), of whom 77 patients had identified pathogenic mutations. The median age of disease onset was 7 months, w
Коррекция двигательных и поведенческих функций в лечении и реабилитации больных шизотипическим расстройством
На основании особенностей невербального поведения больных шизотипическим расстройством разработаны поведенческие методы, применение которых в их комплексной терапии позволяет добиться более полной редукции психопатологической симптоматики.Behavioral methods were worked out basing of the peculiarities of non−verbal behavior of the patients with schizotypical disorders. The use of the methods in complex therapy allows to achieve more complete reduction in psychopathological signs
Distinctive phenotypic abnormalities associated with submicroscopic 21q22 deletion including DYRK1A
Partial monosomy 21 has been reported, but the phenotypes described are variable with location and size of the deletion. We present 2 patients with a partially overlapping microdeletion of 21q22 and a striking phenotypic resemblance. They both presented with severe psychomotor delay, behavioral problems, no speech, microcephaly, feeding problems with frequent regurgi
Clinical, biochemical and genetic spectrum of 70 patients with ACAD9 deficiency: Is riboflavin supplementation effective?
Background: Mitochondrial acyl-CoA dehydrogenase family member 9 (ACAD9) is essential for the assembly of mitochondrial respiratory chain complex I. Disease causing biallelic variants in ACAD9 have been reported in individuals presenting with lactic acidosis and cardiomyopathy. Results: We describe the genetic, clinical and biochemical findings in a cohort of 70 patients, of whom 29 previously unpublished. We found 34 known and 18 previously unreported variants in ACAD9. No patients harbored biallelic loss of function mutations, indicating that this combination is unlikely to be compatible with life. Causal pathogenic variants were distributed throughout the entire gene, and there was no obvious genotype-phenotype correlation. Most of the patients presented in the first year of life. For this subgroup the survival was poor (50% not surviving the first 2 years) comparing to patients with a later presentation (more than 90% surviving 10 years). The most common clinical findings were cardiomyopathy (85%), muscular weakness (75%) and exercise intolerance (72%). Interestingly, severe intellectual deficits were only reported in one patient and
A (G-to-A) mutation in the initiation codon of the proteolipid protein gene causing a relatively mild form of Pelizaeus-Merzbacher disease in a Dutch family
Combined cardiological and neurological abnormalities due to filamin A gene mutation
Background: Cardiac defects can be the presenting symptom in patients with mutations in the X-linked gene FLNA. Dysfunction of this gene is associated with cardiac abnormalities, especially in the left ventricular outflow tract, but can also cause a congenital malformation of the cerebral cortex. We noticed that some patients diagnosed at the neurogenetics clinic had first presented to a cardiologist, suggesting that earlier recognition may be possible if the diagnosis is suspected. Methods and results: From the Erasmus MC cerebral malformations database 24 patients were identified with cerebral bilateral periventricular nodular heterotopia (PNH) without other cerebral cortical malformations. In six of these patients, a pathogenic mutation in FLNA was present. In five a cardiac defect was also found in the outflow tract. Four had presented to a cardiologist before the cerebral abnormalities were diagnosed. Conclusions: The cardiological phenotype typically consists of aortic or mitral regurgitation, coarctation of the aorta or other left-sided cardiac malformations. Most patients in this category will not have a FLNA mutation, but the presence of neurological complaints, hyperlaxity of the skin or joints and/or a family history with similar cardiac or neurological problems in a possibly X-linked pattern may alert the clinician to the possibility of a FLNA mutation
Defective complex I assembly due to C20orf7 mutations as a new cause of Leigh syndrome
Background: Leigh syndrome is an early onset, progressive, neurodegenerative disorder with developmental and motor skills regression. Characteristic magnetic resonance imaging abnormalities consist of focal bilateral lesions in the basal ganglia and/or the brainstem. The main cause is a deficiency in oxidative phosphorylation due to mutations in an mtDNA or nuclear oxidative phosphorylation gene. Methods and results: A consanguineous Moroccan family with Leigh syndrome comprise 11 children, three of which are affected. Marker analysis revealed a homozygous region of 11.5 Mb on chromosome 20, containing 111 genes. Eight possible mitochondrial candidate genes were sequenced. Patients were homozygous for an unclassified variant (p.P193L) in the cardiolipin synthase gene (CRLS1). As this variant was present in 20% of a Moroccan control population and enzyme activity was only reduced to 50%, this could not explain the rare clinical phenotype in our family. Patients were also homozygous for an amino acid substitution (p.L159F) in C20orf7, a new complex I assembly factor. Parents were heterozygous and unaffected sibs heterozygous or homozygous wild type. The mutation affects the predicted S-adenosylmethionine (SAM) dependent methyltransferase domain of C20orf7, possibly involved in methylation of NDUFB3 during the assembly process. Blue native gel electrophoresis showed an altered complex I assembly with only 30-40% of mature complex I present in patients and 70-90% in carriers. Conclusions: A new cause of Leigh syndrome can be a defect in early complex I assembly due to C20orf7 mutations
Movement disorder and neuronal migration disorder due to ARFGEF2 mutation
We report a child with a severe choreadystonic movement disorder, bilateral periventricular nodular heterotopia (BPNH), and secondary microcephaly based on compound heterozygosity for two new ARFGEF2 mutations (c.2031_2038dup and c.3798_3802del), changing the limited knowledge about the phenotype. The brain MRI shows bilateral hyperintensity of the putamen, BPNH, and generalized atrophy. Loss of ARFGEF2 function affects vesicle trafficking, proliferation/apoptosis, and neurotransmitter receptor function. This can explain BPNH and microcephaly. We hypothesize that the movement disorder and the preferential damage to the basal ganglia, specifically to the putamen, may be caused by an increased sensitivity to degeneration, a dynamic dysfunction due to neurotransmitter receptor mislocalization or a combination of both
- …
