9 research outputs found

    Crack identification based on the nonlinear response of plates with variably oriented surface crack.

    No full text
    In order to secure structural and operational safety of structures, it is important to implement a structural health monitoring (SHM) strategy to issue early warnings on damage or deterioration prior to costly repair or even catastrophic collapse. Developing a SHM strategy for structures enables evaluating structural integrity, durability and reliability of the monitored structure. Hence, the main objective of this work is to develop a damage detection procedure based on a plate’s dynamic response and the Hilbert transform. Rectangular plates are considered and assumed to contain a surface crack which is centrally located, with a depth of h0, a length of 2C and inclined with an angle β. Von Karman plate theory is adopted herein, and the crack is modeled through the line spring model given by fracture mechanics. The plate is assumed to behave nonlinearly due to large deformation. The differential quadrature method is used to investigate the linear and nonlinear dynamic behaviors of cracked plates. The influence of crack’s parameters on modal properties is discussed. The eigenfrequencies of cracked plates with respect to crack half length C and orientation β are performed. For crack characterization, Hilbert transform is applied to the obtained linear and nonlinear time responses. It is shown throughout this paper that identified backbones describe changes in crack orientation

    Multi-cracks identification based on the nonlinear vibration response of beams subjected to moving harmonic load

    No full text
    The aim of this work is to investigate the nonlinear forced vibration of beams containing an arbitrary number of cracks and to perform a multi-crack identification procedure based on the obtained signals. Cracks are assumed to be open and modelled trough rotational springs linking two adjacent sub-beams. Forced vibration analysis is performed by a developed time differential quadrature method. The obtained nonlinear vibration responses are analyzed by Huang Hilbert Transform. The instantaneous frequency is used as damage index tool for cracks detection

    Multi-cracks identification based on the nonlinear vibration response of beams subjected to moving harmonic load

    No full text
    The aim of this work is to investigate the nonlinear forced vibration of beams containing an arbitrary number of cracks and to perform a multi-crack identification procedure based on the obtained signals. Cracks are assumed to be open and modelled trough rotational springs linking two adjacent sub-beams. Forced vibration analysis is performed by a developed time differential quadrature method. The obtained nonlinear vibration responses are analyzed by Huang Hilbert Transform. The instantaneous frequency is used as damage index tool for cracks detection

    Crack identification based on the nonlinear response of plates with variably oriented surface crack.

    No full text
    In order to secure structural and operational safety of structures, it is important to implement a structural health monitoring (SHM) strategy to issue early warnings on damage or deterioration prior to costly repair or even catastrophic collapse. Developing a SHM strategy for structures enables evaluating structural integrity, durability and reliability of the monitored structure. Hence, the main objective of this work is to develop a damage detection procedure based on a plate’s dynamic response and the Hilbert transform. Rectangular plates are considered and assumed to contain a surface crack which is centrally located, with a depth of h0, a length of 2C and inclined with an angle β. Von Karman plate theory is adopted herein, and the crack is modeled through the line spring model given by fracture mechanics. The plate is assumed to behave nonlinearly due to large deformation. The differential quadrature method is used to investigate the linear and nonlinear dynamic behaviors of cracked plates. The influence of crack’s parameters on modal properties is discussed. The eigenfrequencies of cracked plates with respect to crack half length C and orientation β are performed. For crack characterization, Hilbert transform is applied to the obtained linear and nonlinear time responses. It is shown throughout this paper that identified backbones describe changes in crack orientation
    corecore