9,256 research outputs found
Use of derived forcing functions at Centaur main engine cutoff in predicting transient loads on Mariner Mars 1971 and Viking spacecraft
Mathematical models for prediction of acceleration responses and reaction forces and moments at base of Mariner Mars 71 and Viking spacecraft from Centaur main engine cutof
Determination of yield and erosion damage functions using subjectively elicited data: application to smallholder tea in Sri Lanka
Tea has been Sri Lanka’s major export earner for several decades. However, soil erosion on tea‐producing land has had considerable on‐site and off‐site effects. This study quantifies soil erosion impacts for smallholder tea farms in Sri Lanka by estimating a yield damage function and an erosion damage function using a subjective elicitation technique. The Mitscherlich‐Spillman type of function was found to yield acceptable results. The study indicates that high rates of soil erosion require earlier adoption of soil conservation measures than do low rates of erosion. Sensitivity analysis shows the optimum year to change to a conservation practice is very sensitive to the discount rate but less sensitive to the cost of production and price of tea.Crop Production/Industries,
Constraining the metallicities, ages, star formation histories, and ionizing continua of extragalactic massive star populations
We infer the properties of massive star populations using the far-ultraviolet
stellar continua of 61 star-forming galaxies: 42 at low-z observed with HST and
19 at z~2 from the Megasaura sample. We fit each stellar continuum with a
linear combination of up to 50 single age and single metallicity Starburst99
models. From these fits, we derive light-weighted ages and metallicities, which
agree with stellar wind and photospheric spectral features, and infer the
spectral shapes and strengths of the ionizing continua. Inferred light-weighted
stellar metallicities span 0.05-1.5 Z and are similar to the measured
nebular metallicities. We quantify the ionizing continua using the ratio of the
ionizing flux at 900\AA\ to the non-ionizing flux at 1500\AA\ and demonstrate
the evolution of this ratio with stellar age and metallicity using theoretical
single burst models. These single burst models only match the inferred ionizing
continua of half of the sample, while the other half are described by a mixture
of stellar ages. Mixed age populations produce stronger and harder ionizing
spectra than continuous star formation histories, but, contrary to previous
studies that assume constant star formation, have similar stellar and nebular
metallicities. Stellar population age and metallicity affect the far-UV
continua in different and distinguishable ways; assuming a constant star
formation history diminishes the diagnostic power. Finally, we provide simple
prescriptions to determine the ionizing photon production efficiency
() from the stellar population properties. has a range
of log( Hz erg that depends on stellar age,
metallicity, star formation history, and contributions from binary star
evolution. These stellar population properties must be observationally
determined to determine the number of ionizing photons generated by massive
stars.Comment: 31 pages, 23 figures, resubmitted to ApJ after incorporating the
referee's comments. Comments encourage
The critical current of YBa2Cu3O7-d Low Angle Grain Boundaries
Transport critical current measurements have been performed on 5 degree
[001]-tilt thin film YBa2Cu3O7-delta single grain boundaries with magnetic
field rotated in the plane of the film, phi. The variation of the critical
current has been determined as a function of the angle between the magnetic
field and the grain boundary plane. In applied fields above 1 T the critical
current, j_c, is found to be strongly suppressed only when the magnetic field
is within an angle phi_k of the grain boundary. Outside this angular range the
behavior of the artificial grain boundary is dominated by the critical current
of the grains. We show that the phi dependence of j_c in the suppressed region
is well described by a flux cutting model.Comment: To be published in PRL, new version with minor changes following
referees report
Preliminary flight evaluation of an engine performance optimization algorithm
A performance seeking control (PSC) algorithm has undergone initial flight test evaluation in subsonic operation of a PW 1128 engined F-15. This algorithm is designed to optimize the quasi-steady performance of an engine for three primary modes: (1) minimum fuel consumption; (2) minimum fan turbine inlet temperature (FTIT); and (3) maximum thrust. The flight test results have verified a thrust specific fuel consumption reduction of 1 pct., up to 100 R decreases in FTIT, and increases of as much as 12 pct. in maximum thrust. PSC technology promises to be of value in next generation tactical and transport aircraft
Tracking the evolution of cancer cell populations through the mathematical lens of phenotype-structured equations
This work was supported in part by the French National Research Agency through the “ANR blanche” project Kibord [ANR-13-BS01-0004].Background: A thorough understanding of the ecological and evolutionary mechanisms that drive the phenotypic evolution of neoplastic cells is a timely and key challenge for the cancer research community. In this respect, mathematical modelling can complement experimental cancer research by offering alternative means of understanding the results of in vitro and in vivo experiments, and by allowing for a quick and easy exploration of a variety of biological scenarios through in silico studies. Results: To elucidate the roles of phenotypic plasticity and selection pressures in tumour relapse, we present here a phenotype-structured model of evolutionary dynamics in a cancer cell population which is exposed to the action of a cytotoxic drug. The analytical tractability of our model allows us to investigate how the phenotype distribution, the level of phenotypic heterogeneity, and the size of the cell population are shaped by the strength of natural selection, the rate of random epimutations, the intensity of the competition for limited resources between cells, and the drug dose in use. Conclusions: Our analytical results clarify the conditions for the successful adaptation of cancer cells faced with environmental changes. Furthermore, the results of our analyses demonstrate that the same cell population exposed to different concentrations of the same cytotoxic drug can take different evolutionary trajectories, which culminate in the selection of phenotypic variants characterised by different levels of drug tolerance. This suggests that the response of cancer cells to cytotoxic agents is more complex than a simple binary outcome, i.e., extinction of sensitive cells and selection of highly resistant cells. Also, our mathematical results formalise the idea that the use of cytotoxic agents at high doses can act as a double-edged sword by promoting the outgrowth of drug resistant cellular clones. Overall, our theoretical work offers a formal basis for the development of anti-cancer therapeutic protocols that go beyond the ‘maximum-tolerated-dose paradigm’, as they may be more effective than traditional protocols at keeping the size of cancer cell populations under control while avoiding the expansion of drug tolerant clones.Publisher PDFPeer reviewe
Clem Lack memorial oration 22 March 1973 (sponsored by the Royal Historical Society of Queensland) : "some Queensland personalities at close range"
Use of electronic medical records and biomarkers to manage risk and resource efficiencies
Peer reviewedPublisher PD
Is attending a mental process?
The nature of attention has been the topic of a lively research programme in psychology for over a century. But there is widespread agreement that none of the theories on offer manage to fully capture the nature of attention. Recently, philosophers have become interested in the debate again after a prolonged period of neglect. This paper contributes to the project of explaining the nature of attention. It starts off by critically examining Christopher Mole’s prominent “adverbial” account of attention, which traces the failure of extant psychological theories to their assumption that attending is a kind of process. It then defends an alternative, process-based view of the metaphysics of attention, on which attention is understood as an activity and not, as psychologists seem to implicitly assume, an accomplishment. The entrenched distinction between accomplishments and activities is shown to shed new light on the metaphysics of attention. It also provides a novel diagnosis of the empirical state of play
- …
