17 research outputs found
Structural and functional evolution of the P2Y12-like receptor group
Metabotropic pyrimidine and purine nucleotide receptors (P2Y receptors) belong to the superfamily of G protein-coupled receptors (GPCR). They are distinguishable from adenosine receptors (P1) as they bind adenine and/or uracil nucleotide triphosphates or diphosphates depending on the subtype. Over the past decade, P2Y receptors have been cloned from a variety of tissues and species, and as many as eight functional subtypes have been characterized. Most recently, several members of the P2Y12-like receptor group, which includes the clopidogrel-sensitive ADP receptor P2Y12, have been deorphanized. The P2Y12-like receptor group comprises several structurally related GPCR which, however, display heterogeneous agonist specificity including nucleotides, their derivatives, and lipids. Besides the established function of P2Y12 in platelet activation, expression in macrophages, neuronal and glial cells as well as recent results from functional studies implicate that several members of this group may have specific functions in neurotransmission, inflammation, chemotaxis, and response to tissue injury. This review focuses specifically on the structure-function relation and shortly summarizes some aspects of the physiological relevance of P2Y12-like receptor members
Development of selective agonists and antagonists of P2Y receptors
Although elucidation of the medicinal chemistry of agonists and antagonists of the P2Y receptors has lagged behind that of many other members of group A G protein-coupled receptors, detailed qualitative and quantitative structure–activity relationships (SARs) were recently constructed for several of the subtypes. Agonists selective for P2Y1, P2Y2, and P2Y6 receptors and nucleotide antagonists selective for P2Y1 and P2Y12 receptors are now known. Selective nonnucleotide antagonists were reported for P2Y1, P2Y2, P2Y6, P2Y11, P2Y12, and P2Y13 receptors. At the P2Y1 and P2Y12 receptors, nucleotide agonists (5′-diphosphate derivatives) were converted into antagonists of nanomolar affinity by altering the phosphate moieties, with a focus particularly on the ribose conformation and substitution pattern. Nucleotide analogues with conformationally constrained ribose-like rings were introduced as selective receptor probes for P2Y1 and P2Y6 receptors. Screening chemically diverse compound libraries has begun to yield new lead compounds for the development of P2Y receptor antagonists, such as competitive P2Y12 receptor antagonists with antithrombotic activity. Selective agonists for the P2Y4, P2Y11, and P2Y13 receptors and selective antagonists for P2Y4 and P2Y14 receptors have not yet been identified. The P2Y14 receptor appears to be the most restrictive of the class with respect to modification of the nucleobase, ribose, and phosphate moieties. The continuing process of ligand design for the P2Y receptors will aid in the identification of new clinical targets
Recommended from our members
Single-cell RNA-sequencing of differentiating iPS cells reveals dynamic genetic effects on gene expression
Abstract: Recent developments in stem cell biology have enabled the study of cell fate decisions in early human development that are impossible to study in vivo. However, understanding how development varies across individuals and, in particular, the influence of common genetic variants during this process has not been characterised. Here, we exploit human iPS cell lines from 125 donors, a pooled experimental design, and single-cell RNA-sequencing to study population variation of endoderm differentiation. We identify molecular markers that are predictive of differentiation efficiency of individual lines, and utilise heterogeneity in the genetic background across individuals to map hundreds of expression quantitative trait loci that influence expression dynamically during differentiation and across cellular contexts
GATA6 Cooperates with EOMES/SMAD2/3 to Deploy the Gene Regulatory Network Governing Human Definitive Endoderm and Pancreas Formation.
Heterozygous de novo mutations in GATA6 are the most frequent cause of pancreatic agenesis in humans. In mice, however, a similar phenotype requires the biallelic loss of Gata6 and its paralog Gata4. To elaborate the human-specific requirements for GATA6, we chose to model GATA6 loss in vitro by combining both gene-edited and patient-derived pluripotent stem cells (hPSCs) and directed differentiation toward β-like cells. We find that GATA6 heterozygous hPSCs show a modest reduction in definitive endoderm (DE) formation, while GATA6-null hPSCs fail to enter the DE lineage. Consistent with these results, genome-wide studies show that GATA6 binds and cooperates with EOMES/SMAD2/3 to regulate the expression of cardinal endoderm genes. The early deficit in DE is accompanied by a significant reduction in PDX1+ pancreatic progenitors and C-PEPTIDE+ β-like cells. Taken together, our data position GATA6 as a gatekeeper to early human, but not murine, pancreatic ontogeny.We thank the NIHR Cambridge BRC hiPSC core facility for the derivation of GATA6 hiPSC lines, Dr. Norihiro Tsuneyoshi for advice and guidance on gene editing using TALENs, and Dr. Bruno Reversade for insightful discussions. This work was funded by an EDB Singapore Childhood
Undiagnosed Diseases Program grant and an A*STAR Strategic Positioning Fund (SPF) Genetic Orphan Diseases Adopted: Fostering Innovation Therapy (GODAFIT) grant and by an ERC starting grant Relieve IMDs and core grant funding from the Wellcome Trust and Medical Research Council (PSAG028) (LV and PM). A.T.H. is a Wellcome Trust Senior Investigato
Recommended from our members
GATA6 Cooperates with EOMES/SMAD2/3 to Deploy the Gene Regulatory Network Governing Human Definitive Endoderm and Pancreas Formation.
Heterozygous de novo mutations in GATA6 are the most frequent cause of pancreatic agenesis in humans. In mice, however, a similar phenotype requires the biallelic loss of Gata6 and its paralog Gata4. To elaborate the human-specific requirements for GATA6, we chose to model GATA6 loss in vitro by combining both gene-edited and patient-derived pluripotent stem cells (hPSC) and directed differentiation toward beta-like cells. We find that GATA6 heterozygous hPSC show a modest
reduction in definitive endoderm (DE) formation, while GATA6 null hPSC fail to enter the DE lineage. Consistent with these results, genome-wide studies show that GATA6 binds and cooperates with EOMES/SMAD2/3 to regulate the expression of cardinal endoderm genes. The early deficit in DE is accompanied by a significant reduction in PDX1+ pancreatic progenitors and C-PEPTIDE+ beta-like cells. Taken together, our data position GATA6 as a gatekeeper to early human, but not murine, pancreatic ontogeny.We thank the NIHR Cambridge BRC hiPSC core facility for the derivation of GATA6 hiPSC lines, Dr. Norihiro Tsuneyoshi for advice and guidance on gene editing using TALENs, and Dr. Bruno Reversade for insightful discussions. This work was funded by an EDB Singapore Childhood
Undiagnosed Diseases Program grant and an A*STAR Strategic Positioning Fund (SPF) Genetic Orphan Diseases Adopted: Fostering Innovation Therapy (GODAFIT) grant and by an ERC starting grant Relieve IMDs and core grant funding from the Wellcome Trust and Medical Research Council (PSAG028) (LV and PM). A.T.H. is a Wellcome Trust Senior Investigato