8,845 research outputs found
Effect of micellar charge on the conformation and dynamics of melittin
Electrostatic interactions play a crucial role in modulating and stabilizing molecular interactions in membranes and membrane-mimetic systems such as micelles. We have monitored the change in the conformation and dynamics of the cationic hemolytic peptide melittin bound to micelles of various charge types, utilizing fluorescence and circular dichroism (CD) spectroscopy. The sole tryptophan of melittin displays a red-edge excitation shift (REES) of 3-6 nm when bound to anionic, nonionic, and zwitterionic micelles. This suggests that melittin is localized in a restricted environment, probably in the interfacial region of the micelles, and this region offers considerable restriction to the reorientational motion of the solvent dipoles around the excited state tryptophan in melittin. Further, the rotational mobility of melittin is considerably reduced in these micelles and is found to be dependent on the surface charge of micelles. Interestingly, our results show that melittin does not partition into cetyltrimethylammonium bromide (CTAB) micelles owing to electrostatic repulsion between melittin and CTAB micelles, both of which carry a positive charge. In addition, the fluorescence lifetime of melittin is modulated in micelles of different charge types. The lowest mean fluorescence lifetime is observed in the case of melittin bound to anionic sodium dodecyl sulfate (SDS) micelles. CD spectroscopy shows that micelles induce significant helicity to melittin, with maximum helicity being induced in the case of melittin bound to SDS micelles. Fluorescence quenching measurements using the neutral aqueous quencher acrylamide show differential accessibility of melittin in various types of micelles. Taken together, our results show that micellar surface charge can modulate the conformation and dynamics of melittin. These results could be relevant to understanding the role of the surface charge of membranes in the interaction of membrane-active, amphiphilic peptides with membranes
Effect of ionic strength on folding and aggregation of the hemolytic peptide melittin in solution
Melittin is a cationic, amphipathic, hemolytic peptide composed of 26 amino acid residues. It is intrinsically fluorescent due to the presence of a single tryptophan residue, which has been shown to be crucial for its hemolytic activity. It undergoes a structural transition from a random coil monomer to an α -helical tetramer at high ionic strength. Although the aggregation behavior of melittin in solution is well characterized, dynamic information associated with the aggregation of melittin is lacking. In this paper, we have monitored the effect of ionic strength on the dynamics and aggregation behavior of melittin in aqueous solution by utilizing sensitive fluorescence approaches, which include the red edge excitation shift (REES) approach. Importantly, we demonstrate that REES is sensitive to the self-association of melittin induced by ionic strength. The change in environment experienced by melittin tryptophan(s) is supported by changes in fluorescence emission maximum, polarization, and lifetime. In addition, the accessibility of the tryptophan residue was probed by fluorescence quenching experiments using acrylamide and trichloroethanol as soluble and hydrophobic quenchers, respectively. Circular dichroism studies confirm the ionic strength-induced change in the secondary structure of melittin. Taken together, these results constitute the first report showing that REES could be used as a sensitive tool to monitor the aggregation behavior of melittin in particular and other proteins and peptides in general
Melittin: a membrane-active peptide with diverse functions
Melittin is the principal toxic component in the venom of the European honey bee Apis mellifera and is a cationic, hemolytic peptide. It is a small linear peptide composed of 26 amino acid residues in which the amino-terminal region is predominantly hydrophobic whereas the carboxy-terminal region is hydrophilic due to the presence of a stretch of positively charged amino acids. This amphiphilic property of melittin has resulted in melittin being used as a suitable model peptide for monitoring lipid-protein interactions in membranes. In this review, the solution and membrane properties of melittin are highlighted, with an emphasis on melittin-membrane interaction using biophysical approaches. The recent applications of melittin in various cellular processes are discussed
Influence of lipid chain unsaturation on membrane-bound melittin: a fluorescence approach
AbstractMelittin, a cationic hemolytic peptide, is intrinsically fluorescent due to the presence of a single functionally important tryptophan residue. The organization of membrane-bound melittin is dependent on the physical state and composition of membranes. In particular, polyunsaturated lipids have been shown to modulate the membrane-disruptive action of melittin. Phospholipids with polyunsaturated acyl chains are known to modulate a number of physical properties of membranes and play an important role in regulating structure and function of membrane proteins. In this study, we have used melittin to address the influence of unsaturated lipids in modulating lipid–protein interactions. Our results show that fluorescence parameters such as intensity, emission maximum, polarization, lifetime and acrylamide quenching of melittin incorporated in membranes are dependent on the degree of unsaturation of lipids in membranes. Importantly, melittin in membranes composed of various unsaturated lipids shows red edge excitation shift (REES) implying that melittin is localized in a motionally restricted region in membranes. The extent of REES was found to increase drastically in membranes with increasing unsaturation, especially when the lipids contained more than two double bonds. In addition, increasing unsaturation in membranes causes a considerable change in the secondary structure of membrane-bound melittin. Taken together, our results assume significance in the overall context of the role of unsaturated lipids in membranes in the organization and function of membrane proteins and membrane-active peptides
Fluctuation Effects And Order Parameter Symmetry In The Cuprate Superconductors
Effect of phase fluctuations on superconducting states with anisotropic order
parameters is studied in a BCS like lattice model of cuprate superconductors.
The degradation of the mean field transition temperature due to phase
fluctuations is estimated within a Kosterlitz-Thouless scenario. Values of the
interaction parameters for optimal doping, corresponding to a stable
superconducting state of symmetry, which fit the nodal structure of
the superconducting order parameter in the Bi2212 compound, are obtained. The
angular position of the node is found to be insensitive to the dopant
concentration.Comment: Latex file, 8 output pages, 5 figures (available from Authors on
request), to appear in Europhysics Letter
Transition temperature of ferromagnetic semiconductors: a dynamical mean field study
We formulate a theory of doped magnetic semiconductors such as
GaMnAs which have attracted recent attention for their possible use
in spintronic applications. We solve the theory in the dynamical mean field
approximation to find the magnetic transition temperature as a function
of magnetic coupling strength and carrier density . We find that
is determined by a subtle interplay between carrier density and magnetic
coupling.Comment: 4 pages, 4 figure
Pseudorandom Generators for Width-3 Branching Programs
We construct pseudorandom generators of seed length that -fool ordered read-once branching programs
(ROBPs) of width and length . For unordered ROBPs, we construct
pseudorandom generators with seed length . This is the first improvement for pseudorandom
generators fooling width ROBPs since the work of Nisan [Combinatorica,
1992].
Our constructions are based on the `iterated milder restrictions' approach of
Gopalan et al. [FOCS, 2012] (which further extends the Ajtai-Wigderson
framework [FOCS, 1985]), combined with the INW-generator [STOC, 1994] at the
last step (as analyzed by Braverman et al. [SICOMP, 2014]). For the unordered
case, we combine iterated milder restrictions with the generator of
Chattopadhyay et al. [CCC, 2018].
Two conceptual ideas that play an important role in our analysis are: (1) A
relabeling technique allowing us to analyze a relabeled version of the given
branching program, which turns out to be much easier. (2) Treating the number
of colliding layers in a branching program as a progress measure and showing
that it reduces significantly under pseudorandom restrictions.
In addition, we achieve nearly optimal seed-length
for the classes of: (1) read-once polynomials on
variables, (2) locally-monotone ROBPs of length and width
(generalizing read-once CNFs and DNFs), and (3) constant-width ROBPs of length
having a layer of width in every consecutive
layers.Comment: 51 page
- …