2,568 research outputs found

    First principles design of divacancy defected graphene nanoribbon based rectifying and negative differential resistance device

    Full text link
    We have elaborately studied the electronic structure of 555-777 divacancy (DV) defected armchair edged graphene nanoribbon (AGNR) and transport properties of AGNR based two-terminal device constructed with one defected electrode and one N doped electrode, by using density functional theory and non-equilibrium Green's function based approach. The introduction of 555-777 DV defect into AGNRs, results in a shifting of the {\pi} and {\pi}* bands towards the higher energy value which indicates a shifting of the Fermi level towards the lower energy. Formation of a potential barrier, very similar to that of conventional p-n junction, has been observed across the junction of defected and N doped AGNR. The prominent asymmetric feature of the current in the positive and negative bias indicates the diode like property of the device with high rectifying efficiency within wide range of bias voltages. The device also shows robust negative differential resistance (NDR) with very high peak-to-valley ratio. The analysis of the shifting of the energy states of the electrodes and the modification of the transmission function with applied bias provides an insight into the nonlinearity and asymmetry observed in the I-V characteristics. Variation of the transport properties on the width of the ribbon has also been discussed.Comment: 28 Pages, 12 Figures and 1 tabl

    A Search for Fallback Disks in Four Young Supernova Remnants

    Full text link
    We report on our search for the optical/infrared counterparts to the central compact objects in four young supernova remnants: Pup A, PKS 1209-52, RCW 103, and Cas A. The X-ray point sources in these supernova remnants are excellent targets for probing the existence of supernova fallback disks, since irradiation of a disk by a central X-ray source should lead to an infrared excess. We used ground-based optical and near-infrared imaging and Spitzer Space Telescope mid-infrared imaging to search for optical/infrared counterparts at the X-ray point source positions measured by the Chandra X-Ray Observatory. We did not detect any counterparts, and hence find no evidence for fallback disks around any of these sources. In PKS 1209-52, we are able to exclude a nearby optical/infrared candidate counterpart. In RCW 103, a blend of 3 faint stars at the X-ray source position prevents us from deriving useful limits. For the other targets, the upper limits on the infrared/X-ray flux ratio are as deep as (1.0--1.7)×10−4\times 10^{-4}. Comparing these limits to the ratio of ≈6×10−5\approx 6\times10^{-5} measured for 4U 0142+61 (a young pulsar recently found with an X-ray irradiated dust disk), we conclude that the non-detection of any disks around young neutron stars studied here are consistent with their relatively low X-ray luminosities, although we note that a similar dust disk around the neutron star in Pup A should be detectable by deeper infrared observations.Comment: 9 pages, 5 figures, revised to address referee's comments, and accepted for publication in Ap

    Purification of Mixed State with Closed Timelike Curve is not Possible

    Full text link
    In ordinary quantum theory any mixed state can be purified in an enlarged Hilbert space by bringing an ancillary system. The purified state does not depend on the state of any extraneous system with which the mixed state is going to interact and on the physical interaction. Here, we prove that it is not possible to purify a mixed state that traverses a closed time like curve (CTC) and allowed to interact in a consistent way with a causality-respecting (CR) quantum system in the same manner. Thus, in general for arbitrary interactions between CR and CTC systems there is no universal 'Church of the larger Hilbert space' for mixed states with CTC. This shows that in quantum theory with CTCs there can exist 'proper' and 'improper' mixtures.Comment: Latex2e, No Figs, 4 + pages, An error corrected, Results unchange

    Infrared Spectroscopy of GX 1+4/V2116 Oph: Evidence for a Fast Red Giant Wind?

    Get PDF
    We present infrared spectroscopy of the low-mass X-ray binary GX 1+4/V2116 Oph. This symbiotic binary consists of a 2-min accretion-powered pulsar and an M5 III red giant. A strong He I 1.083 micron emission line with a pronounced P Cygni profile was observed. From the blue edge of this feature, we infer an outflow velocity of 250(50) km/s. This is an order of magnitude faster than a typical red giant wind, and we suggest that radiation from the accretion disk or the neutron star may contribute to the acceleration of the outflow. We infer a wind mass loss rate of around 10^-6 Msun/yr. Accretion from such a strong stellar wind provides a plausible alternative to Roche lobe overflow for supplying the accretion disk which powers the X-ray source. The H I Paschen beta and He I 1.083 micron lines showed no evidence for the dramatic changes previously reported in some optical lines, and no evidence for pulsations at the 2-min pulsar period.Comment: 11 pages including 2 PS figures. To appear in ApJ Letter

    Universality of modulation length (and time) exponents

    Full text link
    We study systems with a crossover parameter lambda, such as the temperature T, which has a threshold value lambda* across which the correlation function changes from exhibiting fixed wavelength (or time period) modulations to continuously varying modulation lengths (or times). We report on a new exponent, nuL, characterizing the universal nature of this crossover. These exponents, similar to standard correlation length exponents, are obtained from motion of the poles of the momentum (or frequency) space correlation functions in the complex k-plane (or omega-plane) as the parameter lambda is varied. Near the crossover, the characteristic modulation wave-vector KR on the variable modulation length "phase" is related to that on the fixed modulation length side, q via |KR-q|\propto|T-T*|^{nuL}. We find, in general, that nuL=1/2. In some special instances, nuL may attain other rational values. We extend this result to general problems in which the eigenvalue of an operator or a pole characterizing general response functions may attain a constant real (or imaginary) part beyond a particular threshold value, lambda*. We discuss extensions of this result to multiple other arenas. These include the ANNNI model. By extending our considerations, we comment on relations pertaining not only to the modulation lengths (or times) but also to the standard correlation lengths (or times). We introduce the notion of a Josephson timescale. We comment on the presence of "chaotic" modulations in "soft-spin" and other systems. These relate to glass type features. We discuss applications to Fermi systems - with particular application to metal to band insulator transitions, change of Fermi surface topology, divergent effective masses, Dirac systems, and topological insulators. Both regular periodic and glassy (and spatially chaotic behavior) may be found in strongly correlated electronic systems.Comment: 22 pages, 15 figure

    Modulation and correlations lengths in systems with competing interactions

    Full text link
    We examine correlation functions in the presence of competing long and short ranged interactions to find multiple correlation and modulation lengths. We calculate the ground state stripe width of an Ising ferromagnet, frustrated by an arbitrary long range interaction. In large nn systems, we demonstrate that for a short range system frustrated by a general competing long range interaction, the crossover temperature T∗T^* veers towards the critical temperature of the unfrustrated short range system (i.e., that in which the frustrating long range interaction is removed). We also show that apart from certain special crossover points, the total number of correlation and modulation lengths remains conserved. We derive an expression for the change in modulation length with temperature for a general system near the ground state with a ferromagnetic interaction and an opposing long range interaction. We illustrate that the correlation functions associated with the exact dipolar interactions differ substantially from those in which a scalar product form between the dipoles is assumed.Comment: 17 pages, 9 figure

    Generation of strong magnetic fields by r-modes in millisecond accreting neutron stars: induced deformations and gravitational wave emission

    Full text link
    Differential rotation induced by the r-mode instability can generate very strong toroidal fields in the core of accreting, millisecond spinning neutron stars. We introduce explicitly the magnetic damping term in the evolution equations of the r-modes and solve them numerically in the Newtonian limit, to follow the development and growth of the internal magnetic field. We show that the strength of the latter can reach large values, B∼1014B \sim 10^{14} G, in the core of the fastest accreting neutron stars. This is strong enough to induce a significant quadrupole moment of the neutron star mass distribution, corresponding to an ellipticity |\epsilon_B}| \sim 10^{-8}. If the symmetry axis of the induced magnetic field is not aligned with the spin axis, the neutron star radiates gravitational waves. We suggest that this mechanism may explain the upper limit of the spin frequencies observed in accreting neutron stars in Low Mass X-Ray Binaries. We discuss the relevance of our results for the search of gravitational waves.Comment: 11 pages, 8 figure

    Mass formulas and thermodynamic treatment in the mass-density-dependent model of strange quark matter

    Full text link
    The previous treatments for strange quark matter in the quark mass-density-dependent model have unreasonable vacuum limits. We provide a method to obtain the quark mass parametrizations and give a self-consistent thermodynamic treatment which includes the MIT bag model as an extreme. In this treatment, strange quark matter in bulk still has the possibility of absolute stability. However, the lower density behavior of the sound velocity is opposite to previous findings.Comment: Formatted in REVTeX 3.1, 5 pages, 3 figures, to appear in PRC6
    • …
    corecore